Middleware Challenges for Wireless Sensor Networks

Kay Römer, Oliver Kasten, Friedemann Mattern

Instructor: Dr. Yingshu Li
Presented by: Chinh Vu

Department of Computer Science
Georgia State University
cscctvx@cs.gsu.edu

September 4, 2008
Outlines

1. **Introduction to Wireless Sensor Network (WSN)**
 - Overview of WSN
 - Basic Operation
 - WSN characteristics

2. **Middleware Challenges**
 - Scope and Functionality
 - Design Principles
In this section

1. Introduction to Wireless Sensor Network (WSN)
 - Overview of WSN
 - Basic Operation
 - WSN characteristics

2. Middleware Challenges
 - Scope and Functionality
 - Design Principles
Overview of WSN

Introduction to Wireless Sensor Network

- To bridge the gap between the physical and the virtual world
- Consists of large numbers of cooperating small-scale nodes limited in sensing, wireless communication, computation
Introduction to Wireless Sensor Network

- To bridge the gap between the physical and the virtual world
- Consists of large numbers of cooperating small-scale nodes limited in sensing, wireless communication, computation
- Has wide range of applications such as:
 - Geophysical monitoring (seismic activity)
 - Precision agriculture (soil management)
 - Habitat monitoring (tracking of animal herds)
 - Transportation (traffic monitoring)
 - Military systems, business processes (supply chain management)
Introduction to Wireless Sensor Network

Overview of WSN

- To bridge the gap between the physical and the virtual world
- Consists of large numbers of cooperating small-scale nodes limited in sensing, wireless communication, computation
- Has wide range of applications such as:
 - Geophysical monitoring (seismic activity)
Introduction to Wireless Sensor Network

Overview of WSN

- To bridge the gap between the physical and the virtual world
- Consists of large numbers of cooperating small-scale nodes limited in sensing, wireless communication, computation
- Has wide range of applications such as:
 - Geophysical monitoring (seismic activity)
 - Precision agriculture (soil management)
Introduction to Wireless Sensor Network

- To bridge the gap between the physical and the virtual world
- Consists of large numbers of cooperating small-scale nodes limited in sensing, wireless communication, computation
- Has wide range of applications such as:
 - Geophysical monitoring (seismic activity)
 - Precision agriculture (soil management)
 - Habitat monitoring (tracking of animal herds)
Introduction to Wireless Sensor Network

- To bridge the gap between the physical and the virtual world
- Consists of large numbers of cooperating small-scale nodes limited in sensing, wireless communication, computation
- Has wide range of applications such as:
 - Geophysical monitoring (seismic activity)
 - Precision agriculture (soil management)
 - Habitat monitoring (tracking of animal herds)
 - Transportation (traffic monitoring)
Introduction to Wireless Sensor Network

To bridge the gap between the physical and the virtual world

- Consists of large numbers of cooperating small-scale nodes limited in sensing, wireless communication, computation

- Has wide range of applications such as:
 - Geophysical monitoring (seismic activity)
 - Precision agriculture (soil management)
 - Habitat monitoring (tracking of animal herds)
 - **Transportation (traffic monitoring)**
 - Military systems, business processes (supply chain management)
Introduction to Wireless Sensor Network

To bridge the gap between the physical and the virtual world

Consists of large numbers of cooperating small-scale nodes limited in sensing, wireless communication, computation

Has wide range of applications such as:

- Geophysical monitoring (seismic activity)
- Precision agriculture (soil management)
- Habitat monitoring (tracking of animal herds)
- Transportation (traffic monitoring)
- Military systems, business processes (supply chain management)
In this section

1. **Introduction to Wireless Sensor Network (WSN)**
 - Overview of WSN
 - Basic Operation
 - WSN characteristics

2. **Middleware Challenges**
 - Scope and Functionality
 - Design Principles
Basic Operation

1. **Deploy sensor:**
 - Attach sensors to items.
 - Place sensors manually.
 - Deploy from aircraft.

Tasks deployment:
Tasks can be issued by an external entity connected to the sensor network, such as PDA, an aircraft flying by, or some device on the Internet.

Split the task:
Complex high-level sensing tasks are divided to limited-capability sensors. The readings of the individual sensors then have to be merged in order to obtain a high-level sensing result.
Basic Operation

1. Deploy sensor:
 - Attach sensors to items.
 - Place sensors manually.
 - Deploy from aircraft.

2. Tasks deployment:
 Tasks can be issued by an external entity connected to the sensor network, such as PDA, an aircraft flying by, or some device on the Internet.
Basic Operation

1. **Deploy sensor:**
 - Attach sensors to items.
 - Place sensors manually.
 - Deploy from aircraft.

2. **Tasks deployment:**
 Tasks can be issued by an external entity connected to the sensor network, such as PDA, an aircraft flying by, or some device on the Internet.

3. **Split the task:**
 - Complex high-level sensing tasks are divided to limited-capability sensors.
 - The readings of the individual sensors then have to be merged in order to obtain a high-level sensing result.
Limited energy

Subject to failures due to depleted batteries or environmental influences.
WSN characteristics

- Limited energy
- Subject to failures due to depleted batteries or environmental influences.
- Limited size and energy \rightarrow restricted resources.
WSN characteristics

- Limited energy
- Subject to failures due to depleted batteries or environmental influences.
- **Limited size and energy** \rightarrow **restricted resources.**
- Node mobility, node failures, and environmental obstructions \rightarrow very dynamic network.
WSN characteristics

- Limited energy
- Subject to failures due to depleted batteries or environmental influences.
- Limited size and energy \rightarrow restricted resources.
- Node mobility, node failures, and environmental obstructions \rightarrow very dynamic network.
- Communication failures.
WSN characteristics

- Limited energy
- Subject to failures due to depleted batteries or environmental influences.
- Limited size and energy \rightarrow restricted resources.
- Node mobility, node failures, and environmental obstructions \rightarrow very dynamic network.
- Communication failures.
- Heterogeneity.
WSN characteristics

- Limited energy
- Subject to failures due to depleted batteries or environmental influences.
- Limited size and energy \(\rightarrow\) restricted resources.
- Node mobility, node failures, and environmental obstructions \(\rightarrow\) very dynamic network.
- Communication failures.
- Heterogeneity.
- Scalability issues
Introduction to Wireless Sensor Network (WSN)

WSN characteristics

- Limited energy
- Subject to failures due to depleted batteries or environmental influences.
- Limited size and energy \rightarrow restricted resources.
- Node mobility, node failures, and environmental obstructions \rightarrow very dynamic network.
- Communication failures.
- Heterogeneity.
- **Scalability issues**
- Operating unattended.
WSN characteristics

- Limited energy
- Subject to failures due to depleted batteries or environmental influences.
- Limited size and energy \rightarrow restricted resources.
- Node mobility, node failures, and environmental obstructions \rightarrow very dynamic network.
- Communication failures.
- Heterogeneity.
- Scalability issues
- Operating unattended.
In this section

1. **Introduction to Wireless Sensor Network (WSN)**
 - Overview of WSN
 - Basic Operation
 - WSN characteristics

2. **Middleware Challenges**
 - Scope and Functionality
 - Design Principles
Purpose of middleware

Support the development, maintenance, deployment, and execution of sensing-based applications

- Mechanisms for formulating complex high-level sensing tasks, communicating this task to the WSN.
- Coordination of sensor nodes to split the task and distribute it to the individual sensor nodes
- Data fusion for merging and reporting the result back to the task issuer

Scope

Middleware for sensor networks should provide view on both WSN and traditional networks.
In this section

1. **Introduction to Wireless Sensor Network (WSN)**
 - Overview of WSN
 - Basic Operation
 - WSN characteristics

2. **Middleware Challenges**
 - Scope and Functionality
 - Design Principles
Localized algorithms:

Work is divided to a number of nodes \rightarrow **Scalability** and **robustness**.
Design Principles

Localized algorithms:

Work is divided to a number of nodes → Scalability and robustness.

Data-centric communication:

- A new style of node addressing
- Event-based communication (not traditional request-reply schemes) matches the characteristics of WSN.
Design Principles

Localized algorithms:
Work is divided to a number of nodes → Scalability and robustness.

Data-centric communication:
- A new style of node addressing
- Event-based communication (not traditional request-reply schemes) matches the characteristics of WSN.

Adaptive fidelity algorithms:
Provide mechanisms for selecting parameters or whole range of algorithms.
Design Principles

Operation mode: **Unattended.**

Requirements for **automatic** configuration and error handling.
Design Principles ... cont’d

Operation mode: Unattended.
Requirements for automatic configuration and error handling.

Support for time and location management:
Time and location of sensed real-world events are key elements for fusing individual sensor readings.
Design Principles … cont’d

Operation mode: Unattended.
Requirements for automatic configuration and error handling.

Support for time and location management:
Time and location of sensed real-world events are key elements for fusing individual sensor readings.

Application knowledge in nodes:
Can significantly improve the resource and energy efficiency.
Design Principles

Thank you

Q&A