Financial Annual Report
text classification

Presenter: Xuan Liu
Advisor: Professor Yingshu Li

2017/12/01
Outline

- Motivation
- Dataset & Class Definition
- Feature Selection
- Algorithm-level Comparison
- Assessment Metric
- Result & Analysis
Motivation

- Customer-centric structure are exhibit superior financial performance compared with firms that are internally structured (mostly product-centric).
- Machine Learning tools may help automatically determine company's management alignment and marketing strategy.
- Hard to be found on company’s website and newsletter but can be retrieved from firm’s annual report 10-k filing.
Dataset & Class definition

- Attributes and Business Insight
 - Highly structured official documents with large hidden information.
 - Plain Written English
 - Textual data combined with financial numerical data

- Target Portion
 - Management’s Discussion and Analysis (MDA)
 - MDA is an important document for analysts and investors who want to review the company’s financial fundamentals and management performance.
Binary Classification

- Customer Centric vs Product (Service Centric)
 - Customer-Centric alignment on corporate level can be detected by checking their segment note included in 10-k reports.
 - Our approach is to generalize the classification using MDA context.

![Diagram of Binary Classification]

```
Types of Decisions

Multidivisional? (Number of business units ≥ 2)

  Yes
  → Hybrid structure? (A mix of two types of structures)

  No → Functional structure
       Keywords: single segment

  Yes →

Structure Classification

  No = 0
  → Product structure
     Keywords: products or services

  No = 0
  → Geographical structure
     Keywords: geographic location

  Yes = 1
  → Customer structure
     Keywords: customer or market segments

  No = 0
  → Product-geography hybrid structure
     Keywords: products and geographic location

  Yes = 1
  → Customer-geography hybrid structure
     Keywords: customers and geographic location
```
Dataset Class Distribution

- Use annual report required section “Segment Information” which reveals the internal structural corporate design to label the whole data set.
- Year 2016, whole annual report pool contains 7500 firms’ with complete text version report.
- Resampling (SMOTE) vs Non-Resampling
Resampling (SMOTE) vs Non-resampling

SMOTE - synthetic Minority Oversampling Technique

- Combines informed oversampling of minority class with Random undersampling of majority class

<table>
<thead>
<tr>
<th></th>
<th>Non-resampling</th>
<th>SMOTE</th>
</tr>
</thead>
<tbody>
<tr>
<td>AUC LR</td>
<td>0.6928</td>
<td>0.68397</td>
</tr>
<tr>
<td>Random Forest</td>
<td>0.6717</td>
<td>0.671258</td>
</tr>
</tbody>
</table>
Data Flow

10-K Filing
 + SEC Filing

Extract

MDA
- Management's Discussion and Analysis

Prepare

Data Preparation
- Remove HTML tag
- Remove Tables
- Remove Page Numbers
- Remove Headers

Term Conversion
- Stem
- Create Synonym
- Eliminate Punctuation
- Eliminate Proper Nouns
- Remove Stop Words

Pipline

Review & Analysis
- Review Estimators
- Evaluate RCC AUC
- Evaluate Time Efficiency
- Evaluate PRC

Text Mine

Create Term Vector
- Set Unique Words
- Apply TF-IDF
- Set Term Weight

Classification

Document Classification
- Set Algorithm
- Report Result

Revise Parameters

Evaluation
Feature Selection

- **BOW - Bag of Words**
 - Model - a way of representing text data when modeling text with machine learning algorithms.
 - **Pros**
 - Easy to compute
 - Has basic metric to extract most descriptive terms in the document
 - Easily compute the similarities between two documents
 - **Cons**
 - Based on BoW, it does not capture position in text, semantics, co-occurrences
 - TD-IDF is only useful as a lexical level feature
 - Can’t capture semantics
TD-IDF

\[TF - IDF = TF_t \times \log \frac{N}{DF_t} \]

- **TF_t** – **Term Frequency** of the term \(t \). (How many times does the term occur in the document?)
- **N** – Total Number of Documents in the Corpus.
- **DF_t** – **Document Frequency** of \(t \). (How many documents have the term \(t \)?)
N-gram

- N-gram
 - Sequence of tokens of length N
 - Can be words, combination of words/terms.
 - Unigram (1-item), Bigram (2-items), Trigram (3-items)
Algorithm-level Comparison

- SVM
- Neural Network (Too many layers to be engineer and time consuming)
- Naïve Bayes (Simple)
- Random Forest
- Logistic Regression

- TD-IDF + SVM
- TD-IDF + Random Forest
- TD-IDF + Logistic Regression
Support Vector Machines advocates lots of machines as many as all hyperplane that performs

Pros
- Many public available SVM packages
- Kernel-based framework is powerful, flexible
- SVMs works very well in practice, even with very small training sample sizes

Cons
- No “direct” multi-class SVM, must combines two-class SVMs
- Computation, Memory
 1) During training time, must compute matrix of kernel values for every pairs of examples
 2) Learning can take a long time for large-scale problems

Subject to distances of all correctly separated elements belongs to either side \(\geq \) margin
Logistic Regression

Logistic regression is a linear algorithm (with a non-linear transform on output). It does assume a linear relationship between the input variables with the output.

Pros
- Easy to interpret - the idea of regression is familiar and intuitive

Cons
- Require certain statistical assumption to hold true in data
- Generally low predictive accuracy
- Like linear regression, the model can overfit if you have multiple highly-correlated inputs.
Random Forest (Ensemble)

In a forest with T trees we have $t \in \{1, \ldots, T\}$. All trees are trained independently (and possibly in parallel). During testing, each test point v is simultaneously pushed through all trees (starting at the root).

Pros
- Generalization through random samples/features
- Very fast classification
- Inherently multi-classes
- Simple Training

Cons
- Inconsistency
- Difficulty for adaption
Assessment Metric

- ROC AUC
- PRC
- Time Efficiency
ROC AUC

- ROC - receiver operating characteristic curve,
 - illustrates the diagnostic ability of a binary classifier system as its discrimination threshold is varied.
- AUC - Area Under Curve
 - Range [0.5, 1)
 - Demonstrate if a sample is true label, the possibility of classifier determines it’s a true should be larger than classifier determines it’s a false.

<table>
<thead>
<tr>
<th>True label</th>
<th>Predicted label</th>
<th>True negative (TN)</th>
<th>False positive (FP)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>True negative (TN)</td>
<td>False positive (FP)</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>False negative (FN)</td>
<td>True positive (TP)</td>
</tr>
</tbody>
</table>

Recall = TPR = TP/(TP+FN)

False Positive Rate = FP/(FP+TN)
PRC

- **PRC - Precision-Recall curve**
 - Precision = $\frac{TP}{TP+FP}$
 - Recall = $\frac{TP}{TP+FN}$

- **Advantage**
 - More sensitive than ROC AUC
 - If we need high recall to detect each positive event.
 - If dataset is not balanced, negative instance is much more than positive instances.
Time Efficiency

<table>
<thead>
<tr>
<th>time\ (sec)</th>
<th>5000</th>
<th>10000</th>
<th>15000</th>
</tr>
</thead>
<tbody>
<tr>
<td>LR</td>
<td>5.8280</td>
<td>7.196</td>
<td>5.414</td>
</tr>
<tr>
<td>RF</td>
<td>49.623</td>
<td>38.508</td>
<td>33.319</td>
</tr>
<tr>
<td>SVM</td>
<td>30min+</td>
<td>30min+</td>
<td>30min+</td>
</tr>
</tbody>
</table>

- Logistic Regression Classifier tends to train dataset faster than other algorithms.
- SVM classifier left a way behind other classifiers.
- Random Forest relatively outperforms when number of feature is scaled up.
Result & Analysis

- Tables shows 5-scenario on ROC AUC performance

<table>
<thead>
<tr>
<th>Max-feature</th>
<th>5000(small)</th>
<th>5000(large)</th>
<th>10000(small)</th>
<th>10000(large)</th>
<th>15000(large)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Logistic Regression</td>
<td>0.69327</td>
<td>0.6897</td>
<td>0.6928</td>
<td>0.6957</td>
<td>0.6710</td>
</tr>
<tr>
<td>Random Forest</td>
<td>0.6661</td>
<td>0.67029</td>
<td>0.6717</td>
<td>0.6716</td>
<td>0.6788</td>
</tr>
<tr>
<td>SVM</td>
<td>0.55521</td>
<td>0.5013</td>
<td>0.58259</td>
<td>0.5955</td>
<td>N/A</td>
</tr>
</tbody>
</table>
ROC VS PRC

Note: No resampling, baseline for PRC = 0.2 is based on positive/negative ration 1:4
Conclusion

- Linear model (Logistic regression) for *sparse high-dimensional data* such as text as bag-of-words.
- Imbalanced dataset use resampling approach outperform compared with not using it.
The Relationship Between Precision-Recall and ROC Curves,
http://pages.cs.wisc.edu/~jdavis/davisgoadrichcamera2.pdf

Differences between Receiver Operating Characteristic AUC (ROC AUC) and
Precision Recall AUC (PR AUC) http://www.chioka.in/differences-between-
roc-auc-and-pr-auc/

Imbalanced Data Sentiment Analysis in Short Arabic Text

Effect of Customer-Centric Structure on Long-Term Financial Performance,
Lee et al_MKS 2015_org structure

Exploring the Forecasting Potential of Company Annual Reports
Thank you