M-cube: A Duty Cycle Based Multi-Channel MAC Protocol with Multiple Channel Reservation for WSNs

Jinbao Li, Desheng Zhang, Longjiang Guo, Shouling Ji, Yingshu Li

Heilongjiang University
Georgia State University
Outline

- Introduction
- Protocols Design
- Theoretical Analysis
- Performance Evaluation
- Conclusions
Introduction

• **MAC Protocols:**
 • **Single-Channel MAC**
 • S-MAC, B-MAC, T-MAC…
 • Packet Collision.
 • Longer latency and lower throughput.
 • **Multi-Channel MAC**
 • MMSN, CAM-MAC, PMC…
 • Parallel transmission.
 • Improvement in **throughput** and **latency**.
Introduction

• **Multi-Channel MAC :**
 – **Channel selection**
 • Decides **how to select idle channels for nodes**
 • *Static* and *Dynamic*
 – **Media access**
 • Decides **when and how nodes access the channels**
 • *Time Division Multiple Access (TDMA)* and *Carrier Sense Multiple Access (CSMA)*
Dynamic Channel Selection ↔ CSMA

1. **Dynamic** selection requires **less channels** than static schemes;
2. **CSMA** involves no overhead of **time synchronization** in **TDMA**;

These **combined schemes** cannot provide **satisfactory performances** due to **Triple Hidden Terminals problems**.

(1) **multi-hop hidden terminal** which is the traditional hidden terminal in **multi-hop** networks;
(2) **multi-channel hidden terminal** which is a new kind of hidden terminals in **multi-channel** networks;
(3) **sleep hidden terminal** which is the latest kind of hidden terminals defined by this paper in **duty cycle based** networks.
THT

Network Topographies

CC :
DC₁ :
DC₂ :
Sleeping:
Overhearing:

2011-1-14
Hei Long Jiang University
Contributions

1. This paper makes the first attempt to apply the idea of multiple channel reservation to solve THT in WSNs.
2. This paper proposes an asynchronous multi-channel MAC protocols, called M-cube, for WSNs.
3. Extensive simulations are conducted to evaluate the performance of M-cube compared with other four protocols.
4. M-cube is implemented in a real testbed and lessons learned in the implementation are shared.
Outline

- Introduction
- Protocols Design
- Theoretical Analysis
- Performance Evaluation
- Conclusions
M-cube
M-cube

• **(1) Handshake Phase:** Based on its CUI, S computes EIDCL recording that DC\(_1\) and DC\(_3\) are idle, and then S sends a RTS with EIDCL to R. When R receives this RTS, R computes its own EIDCL, and then S computes FEIDCL, and finally sends a CTS with FEIDCL back to S.

• **(2) Channel Announcement Phase:** Assume DC\(_1\) is the first DC in FEIDCL, and then both S and R switch to DC\(_1\) and listen for time T and 2T where T is set according to the maximum data packet size. Because DC\(_1\) is occupied by EF, both S and R could receive a packet from E or F, which means that DC\(_1\) is busy. Therefore, both S and R continue to switch to DC\(_3\) without sending since they both aware of that EF are their common neighbors. After monitoring DC\(_3\), S and R exchange to make sure that DC\(_3\) is idle for both of them due to the multi-hop hidden terminal problem. Then, S and R switch to the CC, and sequentially send the same about this channel selection, which helps their idle neighbors to update their CUIs.

• **(3) Data Communication Phase:** S and R switch back to DC\(_3\) and communicate with each other by exchanging. When these exchanging are over, S and R switch back to the CC again and update their CUIs via overhearing the sent by their communicating neighbors on the CC.
Algorithm 1: Media Access of M-cube

If (upper layer message coming) { put message into packet buffer queue;}
If (sleeping timer fired) { turn off radio; set up active timer by duty cycle;}
If (active timer fired) { turn on radio; set up sleeping timer by duty cycle;}
If (sending timer fired){
 check whether R is on the DC by CUI; use CCA to sense the CC;
 If (R is on DC || CC is busy){
 back off for a while and tries to send later;
 } Else {obtain AIDCL by CUI; send it to R;}
If (receiving a packet){
 If (packet is RTS) { // as a receiver
 obtain EIDCL by CUI; obtain FEIDCL; send it in CTS to S
 While (switch to next DC in FAIDCL) {
 monitor this DC for 2T (explain later in subsection III.D);
 If (this DC is busy) {
 If (node occupying this DC is not a neighbor of S) {
 send CSC on this DC to inform to switch again;
 }
 } Else If (receiving the DII packet from S) {
 send DII on this DC to S; switch to the CC;
 inform neighbors which DC it occupied with ANC;
 switch to that DC; wait to receive DATA from S; send ACK;
 } Else If (receiving CSC) {continue;}
 }
 } Else If (packet is CTS) { // as a sender
 While (switch to next DC in FEIDCL) {
 monitor this DC for T;
 If (this DC is busy) {
 If (node occupying this DC is not a neighbor) {
 send on this DC to inform to switch again;
 }
 } Else { send DII on this DC to R;
 If (receiving DII) {
 switch to CC; inform neighbors occupied DC with ANC;
 switch to that DC; send DATA to R;
 } Else if (receiving CSC) {continue;}
 }
 } Else if (packet is ANC) { update CUI; } // as a neighbor
 If (packet is ACK) { send next DATA; } // as a sender
Outline

- Introduction
- Protocols Design
- Theoretical Analysis
- Performance Evaluation
- Conclusions
Key Idea of Theoretical Analysis

• (1) The lower bound of the average numbers of times (denoted as x) that a node-pair switches among the DCs is computed.

• (2) Represented by the function of the duty cycle q, the value of x can basically decide the latency and the energy consumption on channel switching among DCs.

• (3) The optimal duty cycle q' is obtained, which is defined as the duty cycle that minimizes the lower bound of x.
Outline

- Introduction
- Protocols Design
- Theoretical Analysis
- Performance Evaluation
- Conclusions
Simulation Setup

• **(1)** 289 nodes, whose radio communication ranges are set to 40m, are uniformly deployed in a square area of size 200m*200m with a node density of **38**.

• **(2)** The traffic model that all packets are delivered from many sources to many destinations is used in the simulation.

• **(3)** The payload size is set to **32 Bytes** and the channel bandwidth is set to **250 Kbps**.
Throughput Evaluation

![Graph showing throughput evaluation results for different protocols and parameters.](image)
Energy Evaluation

The Energy Consumption (E-7mWht)

TNC

The Energy Consumption (E-7mWht)

NCBR
Testbed Experiment
Throughput Evaluation
Conclusion

- To address **Triple hidden terminal**, a duty cycle based MAC protocol, called M-cube, with multiple channel reservation is presented in this paper.
- Being fully distributed with no requirements of **time synchronization** or **multi-radio scheme**, M&M is suitable to be implemented in large-scale WSNs.
- The simulation results show that with multiple channel reservation, M-cube can solve **Triple hidden terminal** with a lower cost. Therefore, M-cube achieves a **significant improvement** of the energy efficiency.
- The testbed experiment results show that multiple channel reservation actually enables M-cube to achieve better throughput.
Thank you!