Using Crowdsourced Data in Location-based Social Networks to Explore Influence Maximization

Ji Li1 Zhipeng Cai1 Mingyuan Yan2 Yingshu Li1

1Department of Computer Science, Georgia State University

2Department of Computer Science and Information Systems, University of North Georgia

IEEE INFOCOM 2016
Online social networks become a hot research topic

One of the most important research issues is the influence maximization problem

Many existing works: only the influence propagation in the online social network is considered

The influence can also propagate in the physical world
Introduction

Contribution

- Propose a network model and an influence propagation model

- Influence propagation in
 - Online social network
 - Physical world

- Propose an event activation position selection problem

- Designed a heuristic algorithm for position selection problem
Network Model

Two-layer graph \(G^t = (V, E_f, E_p^t) \)
- **\(V \):** set of \(n \) users deployed in \([0, 1)^2\)
- **\(E_f \):** friendship in the online social network, remains the same
- **\(E_p^t \):** neighbour in the physical world at time \(t \), changes over time

Influence propagation
- An event is activated in the physical world, users around the activation position may be influenced
- The influence propagates in both online social networks and the physical world simultaneously
Network Model

- $u_5 \notin IR^1$, u_5 may still be influenced since u_3, u_6 are u_5’s friends and u_3, $u_6 \in IR$
- $(u_1, u_7) \notin E_f$, influence may propagate $u_1 \rightarrow u_7$ since $(u_1, u_7) \in E^t_p$

\(^1 IR: \) influencing region
Measurements

Datasets
- Two actual datasets named Brightkite and Gowalla
- Dataset origin: Stanford Large Network Dataset Collection [1]

Findings
- Users’ positions in the physical world have high stability
- Influence of different users in an online social network varies a lot
- Convenient to propagate influence in the physical world
- High interdependency of geographical positions for friends in the online social networks
Influence Propagation Model

Basic Influence Propagation Model

- **Initial propagation period**: users around the activation position may be influenced
- **Additional propagation period**: influence propagates in online social networks and the physical world

\[E.t_0 \quad E.t_0 + E.t_{init-pro} \quad E.t_0 + E.t_{init-pro} + E.t_{add-pro} \]
In initial propagation period, users in the influencing region may be influenced

Influencing probability: $p(E, v, init_{inf})$
A influenced user v shares the event E with its friends with probability $p(v, osn_share)$.

v’s friend u be influenced with probability $p(E, u, osn_inf)$.
Influenced user v propagates E with probability $p(v, pw_share)$

v will choose neighbours to share event E

Neighbour u be influenced with probability $p(E, u, phy_inf)$
Influence Propagation Model

Cross Propagation

Online social networks → physical world
- User u Online Social Network user v
- User v Physical World user w

Physical world → online social networks
- User u Physical World user v
- User v Online Social Network user w
Problem Description

- A candidate position set \mathcal{C}
- Select $pos \in \mathcal{C}$ to activate event E so that its influence can be maximized
- Other parameters of E are fixed

Formalized Definition

- $F(pos)$: number of influenced users if activate event E in pos
- Input: candidate position set \mathcal{C}, event E, graph $G^t = (V, E_f, E_p^t)$
- Output: $\arg \max_{pos \in \mathcal{C}} F(pos)$
Optimal Event Activation Position Selection
Heuristic Algorithm

- N_s and N_i: predefined constant
- $P = \text{randomly selected } N_s \text{ positions in } C$
- Iterate for N_i times
 - Replace $pos_1 \in P$ with a new position pos_2 if $F(pos_2) > F(pos_1)$
- Return $\arg\max_{pos \in P} F(pos)$
- F'-based algorithm

Details

Algorithm code New position selection Why not other algorithms?
Figure 1: Comparison of different propagation models
Experimental Results

Distribution of Influenced Users

Figure 2: Comparison of different influence manners
Experimental Results
The Optimal Activation Position Selection Algorithm

Figure 3: Comparison between F-based and F'-based heuristic algorithms
Propose a new network model

A new event influence propagation model is proposed based on the measurement results of two actual datasets

An event activation position selection problem is defined

A heuristic algorithm for the position selection problem is designed
Questions and Answers
Thank you very much
Appendix: Measurements

Introduction to the Datasets

Basics

- Record formatte: \((user-id, login-time, latitude, longitude, location-id)\)
- Use the random way point model to estimate users’ positions [7]

Investigated login records period

- Brightkite: April 2008 through October 2010
- Gowalla: December 2009 through October 2010
Appendix: Measurements

Introduction to the Datasets

Standardization
- Users’ positions in the physical world $\rightarrow [0, 1)^2$
- Time stamps for the logins $\rightarrow [0, 1)$

Data selection
- To make sure the users’ movements are correctly detected, we employ part of the original Brightkite and Gowalla datasets
- The users are distributed in $400 km \times 400 km$ rectangle regions
- These regions include New York, Washington and Philadelphia where users are densely distributed
Appendix: Measurements

Introduction to the Datasets

<table>
<thead>
<tr>
<th>property</th>
<th>Brightkite</th>
<th>Gowalla</th>
</tr>
</thead>
<tbody>
<tr>
<td># users</td>
<td>3551</td>
<td>5231</td>
</tr>
<tr>
<td># edges</td>
<td>9317</td>
<td>10134</td>
</tr>
<tr>
<td>average degree</td>
<td>5.248</td>
<td>3.875</td>
</tr>
<tr>
<td># CC</td>
<td>569</td>
<td>1778</td>
</tr>
<tr>
<td># nodes in largest CC</td>
<td>2907</td>
<td>3114</td>
</tr>
<tr>
<td># logins</td>
<td>430657</td>
<td>297104</td>
</tr>
<tr>
<td>average login</td>
<td>121.278</td>
<td>56.797</td>
</tr>
<tr>
<td># triangles</td>
<td>6738</td>
<td>11580</td>
</tr>
<tr>
<td>average CC size</td>
<td>6.241</td>
<td>2.942</td>
</tr>
<tr>
<td># edges in largest CC</td>
<td>9228</td>
<td>9676</td>
</tr>
</tbody>
</table>

Table 1: Dataset Details
Appendix: Measurements

Users’ Positions and Number of Friends

Figure 4: The distribution of distances
Appendix: Measurements

Users’ Positions and Number of Friends

![Graph of the distribution of numbers of friends for Brightkite and Gowalla.](image)

(a) Brightkite (b) Gowalla

Figure 5: The distribution of numbers of friends
Appendix: Measurements

Users’ Positions and Number of Friends

Figure 6: The distribution of number of neighbors

(a) Brightkite

(b) Gowalla
Appendix: Measurements

Positions and Friendships

Figure 7: The percentage of users within a given distance

(a) Brightkite

(b) Gowalla
Figure 8: The distribution of minimum distances
Appendix: Measurements

Positions and Friendships

Figure 9: The distribution of trajectory similarities

(a) Brightkite

(b) Gowalla
Appendix: Influence Propagation Model

Initial Influence Propagation

\[p(E, v, \text{init_inf}) = \min (p_1 I_1(E, v) I_2(E, v), 1) \]

\[I_1(E, v) = I(J(E.\text{type}, v.\text{interest}), I_{max1}) \]

\[I(x, I_{max}) = (I_{max} - 1) \sqrt{1 - (1 - x)^2} + 1 \]

\[J(E.\text{type}, v.\text{interest}) = \frac{|E.\text{type} \cap v.\text{interest}|}{|E.\text{type} \cup v.\text{interest}|} \]

\[I_2(E, v) = I(T(E, v), I_{max2}) \]

- \(p_1 \): base influence probability
- \(I_{max1} \) & \(I_{max2} \): upper bound of increase
- \(T(E, v) \): time \(v \) stays in the influencing region
Appendix: Influence Propagation Model

Influence Propagation in Online Social Networks

\[p(v, osn_share) = \min(p_2 I_1(E, v), 1) \]

\[p(E, u, osn_inf) = \min(p_3 I_1(E, u)I_3(u, t), 1) \]

\[I_3(u, t) = I(\min(\frac{n_r(E, u, t) - 1}{n_{max}}, 1), I_{max3}) \]

- \(p_2 / p_3 \): base sharing/influencing probability
- \(I_{max3} \): upper bound of increase
- \(n_r(E, u, t) \): the number of descriptions of event \(E \) received by user \(u \) at time \(t \)
- \(n_{max} \): predefined constant
Appendix: Influence Propagation Model

Influence Propagation in the Physical World

\[
p(v, pw_share) = \min(p_4 I_1(E, v), 1)
\]

\[
p(E, u, phy_inf) = \min(p_5 I_1(E, u) I_4(v, u), 1)
\]

\[
I_4(v, u) = \begin{cases}
 c & \text{if } (v, u) \in E_f \\
 1 & \text{otherwise}
\end{cases}
\]

- \(p_4 / p_5\): base sharing/influencing probability
- \(v_share_phy\): set of different time instances for \(v\) to share \(E\) in the physical world
- \(c\): predefined constant which satisfies \(c > 1\)
- The roulette wheel method[8] is used to decide which neighbour to be chosen and \(I_4(v, u)\) is used to calculate the weight.
Appendix: Optimal Event Activation Position Selection

Option 1
- Idea: select the position with most users
- Problem: little interdependency between
 - The number of influenced users
 - The number of users in the initial influencing region

Option 2
- Idea: existing algorithm + influence propagation in the physical world
- Problem: distributions of top influencing users may be dispersive
Option 3

- **Idea:** use the monotonicity of function $F(pos)$
- **Problem:** values of function $F(pos)$ may distribute highly irregularly

Option 4

- **Idea:** test each position in C
- **Problem:** does not work if C is an infinite set
Figure 10: The number of influenced users vs. the number of users in the initial influencing region.
Appendix: Optimal Event Activation Position Selection

Figure 11: User distribution

(a) Brightkite

(b) Gowalla
Appendix: Optimal Event Activation Position Selection

Figure 12: Function $F(pos)$’s values

(a) Brightkite

(b) Gowalla
Appendix: Optimal Event Activation Position Selection

- $N_c[pos_1]$ records how many times pos_1 is selected

- Δ_{init} and α ($\alpha > 1$) are predefined constants

- Calculate the upper bound of $dis(pos_1, pos_2)$ by $\Delta = \frac{\Delta_{init}}{\alpha^{N_c[pos_1]}}$

- Randomly select $pos_2 \in \{pos \in C \mid dis(pos, pos_1) \leq \Delta\}$
Optimal Event Activation Position Selection

Heuristic Algorithm

- Problem: high computation cost
- Reason: complexity of the influence propagation model
- Solution: use another objective function F'
 - F'-based heuristic algorithm: use F' as the objective to evaluate the event activation position
Appendix: Optimal Event Activation Position Selection

\[F'(\text{pos}) = \sum_{u \in U} |u.\text{friends}| + \frac{\sum_{v \in \text{Neg}(u, t)} |v.\text{friends}|}{|\text{Neg}(u, t)|} \]

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>(t)</td>
<td>a randomly selected time instance in ([E.t_0 + E.t_{\text{init}\text{pro}}, \ E.t_0 + E.t{\text{init}\text{pro}} + E.t{\text{add}_\text{pro}}])</td>
</tr>
<tr>
<td>(v.\text{friends})</td>
<td>the set of user (v)'s friends in the online social network</td>
</tr>
<tr>
<td>(\text{pos.x} / \text{pos.y})</td>
<td>the (x)-coordinate / (y)-coordinate of position (\text{pos})</td>
</tr>
<tr>
<td>(\text{Neg}(u, t))</td>
<td>(u)'s neighbors in the physical world at time (t)</td>
</tr>
<tr>
<td>(U)</td>
<td>Users in the influencing region</td>
</tr>
</tbody>
</table>

Table 2: Symbols in Function \(F'\)
Appendix: Optimal Event Activation Position Selection

Algorithm 1 Optimal Activation Position Selection Algorithm

Input: candidate position set C, event E, graph $G^t = (V, E_f, E_p^t)$

Output: position to activate event E

```
for $i = 1$ to $N_s$ do
    $P[i] =$ randomly selected element in $C$, $N_c[i] = 0$;
end for

for $i = 1$ to $N_i$ do
    find the minimum $j$ satisfying $rac{\sum_{k=1}^{j} F(P[k])}{\sum_{k=1}^{N_s} F(P[k])} > \text{rand}$;
    randomly select $pos' \in \{pos \in C | \text{dis}(pos, P[j]) \leq \frac{\Delta_{init}}{\alpha N_c[j]} \}$;
    replace $P[j]$ with $pos'$ if $F(pos') > F(P[j])$;
    $N_c[j]++$;
end for

return $\arg \max_{pos \in P} F(pos)$;
```
Appendix: Experimental Results

<table>
<thead>
<tr>
<th>parameter</th>
<th>value</th>
<th>parameter</th>
<th>value</th>
<th>parameter</th>
<th>value</th>
</tr>
</thead>
<tbody>
<tr>
<td>$E.r_0$</td>
<td>0.01</td>
<td>$E.t_0$</td>
<td>0.5</td>
<td>$E.t_{init \cdot pro}$</td>
<td>0.02</td>
</tr>
<tr>
<td>$E.t_{add \cdot pro}$</td>
<td>0.2</td>
<td>I_{max_1}</td>
<td>3</td>
<td>I_{max_2}</td>
<td>1.5</td>
</tr>
<tr>
<td>I_{max_3}</td>
<td>6</td>
<td>r_p</td>
<td>0.01</td>
<td>c</td>
<td>5</td>
</tr>
<tr>
<td>n_{max}</td>
<td>10</td>
<td>α</td>
<td>2</td>
<td>Δ</td>
<td>0.1</td>
</tr>
<tr>
<td>N_s</td>
<td>10</td>
<td>N_i</td>
<td>10</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 3: Parameters for the Experiments

<table>
<thead>
<tr>
<th>dataset</th>
<th>candidate position set</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brightkite</td>
<td>{(x, y) \mid 0.5 \leq x \leq 0.6, 0.45 \leq y \leq 0.55}</td>
</tr>
<tr>
<td>Gowalla</td>
<td>{(x, y) \mid 0.7 \leq x \leq 0.8, 0.6 \leq y \leq 0.7}</td>
</tr>
</tbody>
</table>

Table 4: Candidate Position Set
Appendix: Experimental Results

Number of Influenced Users

Figure 13: The number of influenced users for different initial propagation time
Figure 14: The number of influenced users for different additional propagation time
Figure 15: The number of influenced users for different initial influence radius

[4] uses the Brightkite and Gowalla datasets to study friendships in online social networks and users’ movements in the physical world.

[5] proposes a friendship prediction approach by fusing the topology and geographical features in LBSNs.

[6] studies the impact of social relations hidden in LBSNs.
Appendix: References I

