Prediction-based Routing with Packet Scheduling under Temporal Constraint in Delay Tolerant Networks

Guoliang Liu, Janani Krishnamani, Rajshekar Sunderraman, Yingshu Li
Outline

• Background
• Motivation
• PRPS Protocol
• Simulation
• Conclusion
Background

• Delay- or Disruption-Tolerant Networks (DTNs)
 – Characteristics:
 • Heterogeneous network
 • Temporary or intermittent connectivity

Wildlife Tracking
Providing Connectivity to rural areas
Vehicular Communications
Stable infrastructure destroyed
Background

• Routing in DTNs:
 – Suffers from the lack of continuous connectivity.
 – Two categories:
 • Flooding strategies:
 – Direct Contact, Two-hop Relay, Tree-based Flooding, Epidemic Routing.
 • Forwarding strategies with topology information:
 – Location-based Routing, Gradient Routing, Link Metric Routing
Motivation

• Consider the messages in DTN

Where?
How?
When?

My work bad or good? QoS
Delivery ratio
Delivery delay
Motivation

• Add a dose of altruism to a network.
 – Add packet scheduling to the routing

• Constraints:
 – Messages may have different sources, destinations and TTLs.
 – Resources like the contact opportunities and duration are limited
 • Each contact, only one message can be forwarded.
Prediction-based routing with packet scheduling (PRPS)

• Goal: increase the overall delivery ratio.
• Two phases:
 – Depict Ability Graph:
 • model the probability of each message arriving at its destination within its TTL
 – Packet Scheduling Process:
 • schedule the packets in the pairs of nodes
Ability Graph

• Model of contact process:
 – contact process of each pair of nodes is modeled as a homogeneous Poisson process.
 – P_{ij} Can be described as the number of events that happen between entities i and j with time interval τ.
 $$P[(N(t+\tau) - N(t)) = \mu] = \frac{e^{-\lambda \tau} (\lambda \tau)^\mu}{\mu!}, \mu = 0, 1, \ldots$$
 – When $\mu = 0$
 $$P[(N(t+\tau) - N(t)) = 0] = e^{-\lambda t}$$
Ability Graph

• Probability of no contact between pair of nodes a and b during time interval τ.

$$q_{ab} = e^{-\lambda_{ab} \tau}$$

• The contact probability:

$$c_{ab} = 1 - q_{ab}$$

• Define P_{ab}^{TTL} as the probability that message m arrives at b from a with m’s TTL.

$$P_{ab}^{TTL} = 1 - \prod_{s=0}^{S} (1 - R_{P_s})$$
Ability Graph

• Calculate P_{ab}^{TTL}
 – NP-hard (finding k shortest paths with limited length is NP-hard if k increases to infinity)

Algorithm 1: Constructing an Ability Graph

Input: A graph $G = (V, E)$, two distinct nodes a and b in G, and time constraint TTL

Output: The probability of successfully forwarding a message from a to b within TTL: P_{ab}^{TTL}

1. $S = \emptyset$.
2. $N_a = \{v \mid (a, v) \in E\}$. $S = \{(a, v) \mid v \in N_a\}$. Regard every edge in S as a path and $S = \{P_1, P_2, \cdots, P_{|S|}\}$.
3. $RP_r = \max(RP_i)$ where RP_i is the reachable probability of path P_i and $P_i \in S$.
4. Set h to be the endpoint of P_r. Let $N_h = \{v \mid (h, v) \in E\}$. Remove P_r from S and add $P_r + (h, v)$ in S if $|P_r| < TTL$ where $v \in N_h$ and $|P_r|$ is the number of edges in P_r.
5. Output $P_i \in S$ if the endpoint of P_i is b. Remove P_j from S if $\exists e (e \in P_i \land e \in P_j)$ where e is an edge in any path.
6. Repeat Step 3 and Step 4 until $S = \emptyset$, or k paths are found, or there are no more edges which can be added;
7. Calculate P_{ab}^{TTL}.
Packet Scheduling Process

• Utility in each node:

\[U_{ab}(\omega) = \sum_{i=0}^{t} P_{b,i}^{TTL} \omega_{i,0} + \sum_{i=0}^{t} \sum_{j=1}^{TTL} P_{a,i}^{TTL-j} \omega_{i,j} \]

• Find the schedule to maximize the utility for each encounter.

\[
U^*_{ab} = \max_{\omega} \sum_{i=0}^{t} P_{b,i}^{TTL} \omega_{i,0} + \sum_{i=0}^{t} \sum_{j=1}^{TTL} P_{a,i}^{TTL-j} \omega_{i,j}
\]

subject to

\[\sum_{i=0}^{K} \omega_{i,j} \leq 1, \forall j \in TTL \]

\[\sum_{j=0}^{\kappa} \omega_{i,j} \leq 1, \forall i \in t \]

\[\omega_{i,j} \in \{0, 1\} \]
Packet Scheduling Process

• The optimal packet scheduling problem can be transformed to Maximum Weight Bipartite Matching.

| TTL | m_1 | | m_2 | | m_3 | |
|-----|------|-----|------|-----|------|
| | a | b | a | b | a | b |
| 4 | 0.6 | 0.65| 0.8 | 1.0 | 0.5 | 0.5 |
| 3 | 0.5 | 0.6 | 0.8 | 1.0 | 0.3 | 0.35|
| 2 | 0.5 | 0.5 | 0.7 | 1.0 | 0.1 | 0.3 |
| 1 | 0.4 | 0.4 | 0.6 | 1.0 | N/A | N/A |

TABLE I: EXAMPLE OF UTILITY EXPECTATION
Simulation

• Data Sets:
 – Synthetic traces
 – Infocom06
 – Sigcomm09

• Methods:
 – Epidemic
 – FCFS
 – PRPS-Greedy
 – PRPS-MWBM
Simulation

- Delivery Ratio:

Fig. 2: Comparison of delivery ratio on different data sets with Maximum $TTL = 15$.

Fig. 3: Comparison of delivery ratio on different data sets with average density of messages $\sigma = 10$.
Simulation

• Delivery Delay:

Fig. 4: Comparison of delivery latency on different data sets with Maximum $TTL = 15$.

Fig. 5: Comparison of delivery latency on different data sets with average density of messages $\sigma = 10$.
Conclusion

• A practical prediction-based routing protocol with packet scheduling.

• Add a dose of altruism of packet priorities to increase the overall delivery ratio.

• Simulations show that our protocol can effectively increase the overall delivery ratio without decreasing overall delivery delay much.
Prediction-based Routing with Packet Scheduling under Temporal Constraint in Delay Tolerant Networks

Thank You

Q&A