Continuous Data Collection Capacity of Wireless Sensor Networks Under Physical Interference Model

Shouling Ji, Yingshu Li
Georgia State University
Raheem Beyah
Georgia Institute of Technology

Outline

1. Introduction
 • Data gathering
 ◦ Data Aggregation, e.g. MAX, MIN, Average
 ◦ Data Collection
 • Snapshot Data Collection
 • Continuous Data Collection
 • Network Capacity
 ◦ Multicast/Unicast/Broadcast Capacity
 ◦ Snapshot Data Collection Capacity
 ◦ Continuous Data Collection Capacity

2. Interference Model
 • Protocol interference model
 \[R_i = \rho \cdot r, \rho \geq 1 \]
 \(R_i \) is the interference radius, \(\rho \) communication radius
 • Physical interference model
 \[\text{SNR} = \frac{P}{N_{e_i}} \sum_{j \in C_i} \frac{1}{d_{ij}} \geq \eta \]
 • Generalized interference model
 \[R(i, s) = W \log(1 + \text{SNR}) \]
 • In this work, we take the physical interference model

Contribution

• A Cell-Based Path Scheduling (CBPS) for Snapshot Data Collection (SDC)
 • Partition the network into cells
 • Construct a cell based data collection tree
 • Achievable network capacity: \(\Omega(W) \), \(W \) is the bandwidth of a channel
 • Order-optimal

• A Segment-Based Pipeline Scheduling (SBPS) algorithm for Continuous Data Collection (CDC)
 • SBPS combines the Compressive Data Gathering (CDG) technique [20, Luo et al.] and the pipeline technique
 • Schedule continuous data transmission level by level
 • Achievable network capacity:
 \[\left\{ \begin{array}{ll}
 \frac{\alpha}{\log N} & \text{if } N \leq \frac{1}{\alpha} \\
 \frac{N}{\log N} & \text{if } N > \frac{1}{\alpha}
 \end{array} \right. \]
 \(\alpha \) is the number of nodes in the WSN, \(N \) is the number of snapshots in a continuous data collection task
2. Network Partition

- **Network Model**
 - n sensors, denoted by s_1, s_2, \ldots, s_n, and one sink deployed in a square area with size $A = c \cdot n$, c is a constant.
 - The distributions of all the nodes are i.i.d.
 - Losing only a constant factor, the sink is located at the top-right corner of the square.
 - Communication radius: r, the size of a data packet: b
 - The network time is slotted with each slot of size $t = b/W$
 - Interference model: physical interference model
 - The achievable data collection capacity C = the ratio between the amount of data successfully collected by the sink and the time used to collect these data

- **Network Partition**
 - Partition the network into square cells with side length $2 \log l\log n = \lambda$
 - The number of cells in each row/column is A
 - The cell with coordinates (i, j) is denoted by K_{ij}

- For large n, the probability that a cell is empty is zero (Lemma 1). Thus, we assume each cell is not empty.
- It is almost surely that no cell contains more than $8 \log n$ sensors (Lemma 2). Hence, we use $8 \log n$ as the upper bound of sensors in a cell.

- **Interference zone**
 - Each cell forwards their data horizontally, vertically, or diagonally (upper-right)
 - To identify which cells can transmit data concurrently, further partition the network into large square zones with side length $R = \omega \cdot l$, called interference zones

- The next job is to determine R
 - If $R = \omega l$, where $\omega = \sqrt[2]{\frac{c}{2}}$, is a constant, the compatible cells can simultaneously and successfully transmit data without interference (Thm 1)
 - Proof idea of Thm 1: a layered method
3. Snapshot Data Collection

- Construct a data collection tree

- Cell-Based Path Scheduling
 - Schedule paths \(p_1, p_2, \ldots, p_r \) and \(p'_1, p'_2, \ldots, p'_s \) until all the data has been transmitted to \(p_1 \) and \(p_2 \), respectively.
 - Schedule \(p_1 \) and \(p_2 \) until all the data has been collected by the sink.

- Capacity Analysis
 - The number of time slots used by CBPS to collect a snapshot is bounded by \(O(n) \) (Thm 2).
 - The achievable network capacity of CBPS is \(\Omega(W) \), which is order-optimal (Thm 3).

- Discussion
 - Snapshot data collection algorithms + pipeline = continuous data collection algorithms?
 - Data accumulation effect

4. Continuous Data Collection

- Compressive Data Gathering (CDG) [30, Luo et al]
 - Traditional manner
 - CDG manner

- Segments
 - Consisting of zones

- Segment-Based Pipeline Scheduling (SBPS)
 - Scheduling at the segment-level
 - Scheduling at the row/column-level, i.e. within a segment
 - Scheduling at the cell-level, i.e. within each row/column
• Capacity analysis
 - The number of time slots used by SBPS to collect N continuous snapshots is at most
 $$8\omega M \sqrt{2 \log n} + 16 \omega^2 MN \log n$$
 where ω is a constant, M is a parameter in CDG (Thm 4)
 - The achievable capacity of SBPS is (Thm 5)
 $$\left\{ \begin{array}{ll}
 \frac{2 \omega \log^2 n}{\log n} & \text{if } N \leq \frac{2}{\log n} \\
 \frac{N \log^2 n}{\log n} & \text{otherwise}
 \end{array} \right.$$

5. Conclusion
• The snapshot data collection under physical interference model is studied for WSNs.
 - A Cell-Based Path Scheduling (CBPS) algorithm is proposed
 - The achievable network capacity is order optimal
• The continuous data collection under physical interference model is studied for WSNs.
 - A Segment-Based Pipeline Scheduling (SBPS) algorithm is proposed
 - By using CDG and pipeline, the network capacity is improved significantly
• Future work
 - Continuous data collection capacity of arbitrary wireless networks
 - Distributed data collection algorithms and their achievable capacity for wireless networks