On Constructing Stable Virtual Backbones in Mobile Ad Hoc Networks

Feng Wang
University of Minnesota

Outline
- Introduction
- Related work
- Connected Maximal Independent Set with Multiple Initiators (MCMIS)
- Conclusion

Mobile Ad-hoc Network
- A collection of wireless mobile hosts forming a temporary network without the aid of any established infrastructure or centralized administration. [Johnson and Maltz]

Mobile Ad-hoc network
- Dynamic topology
- Self-organizing
- Bandwidth and energy constraints
- Multi-hop network
- Shared media

Broadcast storm problem
Capacity tends to be zero as nodes increase

Virtual Backbone
- A subset of all mobile hosts
- Connected
- Dominate the whole network

Applications of Virtual Backbone
- Multi-casting and broadcasting
- Ad hoc routing
- Topology management
- Power management

How to construct a small-scale and stable virtual backbone in mobile environment?
Problem Formulation

- Unit Disk Graph (UDG)
- Dominating Set (DS)
 - A subset $V' \subset V$ such that each node in $V-V'$ is adjacent to some node in V
- Connected Dominating Set (CDS)

Finding CDS in UDG

Related Work

- Centralized
- Distributed
 - CMIS_Wan [Infocom02]
 - Leader election
 - Construct and connect 2-hops MIS
 - Ranking: Level, ID
 - Constant performance ratio as 8
 - CMIS_Min [Mass04]
 - Construct and connect 2-hops MIS
 - Not require level, more efficient
 - Consider stability

MCMIS

- An efficient algorithm to create stable and small-scale virtual backbone
- Localized
 - Faster
 - Spatial reuse the wireless channel
 - Proactively consider stability
 - Two phases
 - Construct a forest consisting of dominating trees rooted at different initiators
 - Merge the forest into one backbone

Node Ranking

- Stability
 - Spatial locality
 - Temporal locality

$$s_n = \frac{1}{\sum_{i=1}^{m} \sqrt{(x_i-x_0)^2 + (y_i-y_0)^2}}$$

Dominating tree construction
Reduce the backbone size

- Reduce # of dominating (black) nodes
 - Before a white node turns into black, it needs to make sure that it won't have black neighbors
- Reduce # of interconnecting (red) nodes
 - Let black node choose the neighbor gray node which can connect to most of the black nodes as connector

Coloring Process

Coloring Process

Coloring Process

Coloring Process

Coloring Process
Coloring Process

![Diagram](image)

All black nodes and all red nodes compose a dominating tree.

MCMIS

- Confliction scenarios
 - No black-black confliction
 - No black-red confliction
 - Black-gray confliction (2-hops)
 - Gray-gray confliction (3-hops)

Reduce backbone size

- Introduce the root for a node to check the connectivity

Reduce Backbone Size

- Choose the shorter path
- Choose only one path out of multiple paths
Receives a black msg

Has lowest rank among neighbors who sent black msg

Upon receiving gray msg from other tree, unicast connect msg if it has not been connected to that tree;
Upon receiving gray2 msg from other tree, unicast connect2 msg to the sender if it has not been connected to that tree;

Broadcast red msg which includes all its black neighbors’ id and root info
If receives a connect2 msg, send connect to its gray neighbor

Broadcast red msg which includes all its black neighbors’ id and root info
If receives a connect2 msg, send connect to its gray neighbor
Coloring Process

- \[1 \]
- \[2 \]
- \[3 \]
- \[4 \]
- \[5 \]
- \[6 \]

Performance Analysis

- Performance ratio is 192.
- Message complexity \(O(n^1) \)
- Time complexity \(O(n) \)

Mobility Model

- Random Way-point model
 - Randomly choose a destination, move towards it at a fixed randomly chosen speed between \((v_{min}, v_{max})\). When reach the destination, pause for a uniformly-distributed pause time.
 - Border effect
 - Destination selection is not uniform, so node distribution is not uniform
 - Speed tends to be zero
- Modified Version
 - Stability parameter
 - A node selects its destination from a bigger region beyond the border
 - Bounce to move toward center when a node reaches boundary

Simulation Results – Fixed Area

Simulation Results – Fixed Node

Simulation Results – Life Time

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Average CDS size</th>
<th>Life Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Marking Process</td>
<td>30.06</td>
<td>27.23</td>
</tr>
<tr>
<td>MCMIS-1</td>
<td>23.81</td>
<td>8.98</td>
</tr>
<tr>
<td>MCMIS-2</td>
<td>24.36</td>
<td>43.48</td>
</tr>
</tbody>
</table>
Conclusions

- Introduce stability into ranking
- Propose localized backbone construction algorithms which are efficient and generate small-scale and stable backbone
- Analyze the performance ratio, time and message complexity
- Verify our argument by extensive simulations

Survivability in MANET

Survivability is the capability of a system to fulfill its mission in a timely manner, even in the presence of attacks or failures

- Resistance
- Recognition
- Recovery
- Refinement

Survivability in MANET

- Challenge
 - Asymmetric link
 - Weak connectivity
 - Episodic connectivity
 - Node mobility [CMIS/MCMIS]
 - Link instability
 - Power restricted
 - Localized, adaptive algorithm

Survivability in MANET

- K-node-connectivity/k-edge-connectivity
- Multi-path routing in MANET
 - Split Multi-path Routing (SMR)
 - Ad-hoc On demand Distance Vector Multi-path routing (AODVM)
- Problems
 - Forwarding duplicate route request messages in order to find multiple path
 - Introduce more message overhead
 - Exacerbate the scalability problem
- Our proposed solution
 - Construct a k-connected virtual backbone
Survivable virtual backbone

- How to construct a virtual backbone which is k-connected with a high probability?
- After the backbone is constructed
 - Adjust the transmission range of the backbone nodes to make the backbone k-connected
 - The backbone nodes select more nodes into backbone if the connectivity requirement is not satisfied. The backbone node needs to check whether it is a bottleneck
- During backbone construction, the neighborhood of backbone node satisfies a certain criteria such that the constructed backbone is k-connected

Thank You!