Protein-Protein Interaction and Group Testing in Bipartite Graphs

Presented by Yingshu Li
5-17-2006

Outline
- Motivation
- Problem definition
- Construction methods
- Generalization

Motivation
Protein-Protein Interactions
- Interactions between bait proteins and prey proteins.
- Critical in many biological processes
 - Formation of macromolecular complexes
 - Transduction of signals in biological pathways

Motivation
Group Testing
- Dates back to World War II.
- Now being used in many applications.
- An efficient method to identify ‘protein-protein interactions’ between a finite number of bait proteins and prey proteins, through conducting tests on subsets of bait and prey proteins.
Motivation

Group testing for protein-protein interactions

Set A: Bait proteins
Set B: Prey proteins

Test1 = positive
Test2 = negative

Group testing in a complete bipartite graph $K_{a,b}$

Motivation

Model group testing as binary incidence matrices

<table>
<thead>
<tr>
<th>test/item</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>test1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>test2</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>test3</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>test4</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

d-disjunct matrix

An $t \times n$ binary matrix is d-disjunct ($d < t$) if for any $d+1$ columns C_0, C_1, \ldots, C_d, there exists a row such that C_0 has an 1-entry and all C_1, \ldots, C_d have 0-entries.

A 2-disjunct matrix

$$\begin{pmatrix}
0 & 0 & 1 & 0 & 0 \\
1 & 0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 & 0 \\
1 & 0 & 1 & 0 & 1 \\
1 & 1 & 0 & 0 & 0
\end{pmatrix}$$

A 3(H)-disjunct matrix

The binary incidence matrix M for a bipartite graph H is $d(H)$-disjunct if for any $d+1$ edges e_0, e_1, \ldots, e_d of H, there exists a row in M indicating that a test contains e_0, but not e_1, \ldots, e_d.

$$\begin{pmatrix}
0 & 1 & 1 & 0 & \cdots & 1 \\
1 & 1 & 0 & 0 & \cdots & 0 \\
1 & 0 & 1 & 0 & \cdots & 1 \\
0 & 1 & 0 & 1 & \cdots & 0
\end{pmatrix}$$

Output
Problem Definition

How to construct a $d(G)$-disjunct matrix for a bipartite graph G?

- Input: a bipartite graph $G=(A, B, E)$.
- Output: a $d(G)$-disjunct matrix (A test regimen).

The First Construction

- $G=(A, B, E)$ is a bipartite graph.
- M_A is a d-disjunct $t_A \times |A|$ matrix with columns labeled by the vertices in A.
- M_B is a d-disjunct $t_B \times |B|$ matrix with columns labeled by the vertices in B.

$$M_A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$M_B = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

Row $<i, i'>$ in M contains e_i, but not $e_{i+1}, ..., e_d$.
If \(t \geq d(k-1)+1 \), then for any \(d + 1 \) columns \(C_0 \ldots C_d \), there exists a row at which the entry of \(C_0 \) does not equal the entries of \(C_1 \ldots C_d \).

The Second Construction

- \(G=(A, B, E) \) is a bipartite graph.
- \(GF(q) \) be a finite field of order \(q \).
- Associate each edge \(e=(u, v) \) of \(G \) a pair of polynomials \((f_u, g_v) \), \(f_u \) and \(g_v \) are of degree \(k-1 \) over \(GF(q) \).

\[
\begin{align*}
M'_{G}(q, k, t) &= \begin{cases} 1 & \text{if } f_1(x) \neq f_2(x) \text{ or } g_3(x) \neq g_4(x) \text{ for } x \in [1, q) \setminus \{0\} \\
0 & \text{otherwise}
\end{cases} \\
&= \begin{pmatrix}
1 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
1 & 0 & 0 & 1
\end{pmatrix}
\end{align*}
\]

Row \(x \) in \(M'_{G}(q, k, t) \) contains \(e_x \) if and only if \(f_1(x) \neq f_2(x) \) or \(g_3(x) \neq g_4(x) \).
Generalization

- $G = (V, E)$ is a hyper-graph and c-colorable.
- $GF(q)$ is a finite field of order q.
- Associate $u \in V$ a polynomial p_u of degree $k-1$ over $GF(q)$ such that for u and v with the same color, p_u and p_v are distinct.

Step 1:
Construct a $t \times |E|$ matrix $M'(q, k, t)$ with the rows labeled by t elements in $GF(q)$ and the columns labeled by all the edges of G such that each cell (x, e) contains a set $\{ (p_u(x), i) \mid u \in V \text{ with color } i \}$.

- Property of M': For any $d+1$ columns C_0, \ldots, C_d in $M'(q, k, t)$, there exists a row at which the entry of C_0 does not contain the entry of C_j for $j=1, \ldots, d$.

Step 2:
Construct a matrix $M(q, k, t)$ from $M'(q, k, t)$. $M(q, k, t)$ has $|V|$ columns labeled with all the vertices in G. For each row x of $M'(q, k, t)$ and each entry Q at row x, construct a row with label $<x, Q>$ for $M(q, k, t)$ such that the cell $(<x, Q>, u)$ contains a 1-entry if and only if u is in color i and $p_u(x) = y$ for $(y, i) = Q$.

- If $t \geq (k - 1) + 1$, then $B(q, k, t)$ is $d(G)$-disjunct.