Localized Construction of Connected Dominating Set in Wireless Networks

Y. Li, S. Zhu, M. T. Thai, and D.-Z. Du
Algorithm Classification

- Distributed VS. Centralized
- Completely localized VS. Serialized

<table>
<thead>
<tr>
<th>PR</th>
<th>Stage</th>
<th>Connectivity Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wu’s O(n)</td>
<td>1-stage</td>
<td>Considered</td>
</tr>
<tr>
<td>Alzoubi’s</td>
<td>192</td>
<td>2-stage</td>
</tr>
<tr>
<td>r-CDS</td>
<td>172</td>
<td>1-stage</td>
</tr>
</tbody>
</table>
Key idea

Maximal Independent Set (MIS) is a maximal set of pair-wise non-adjacent nodes.

MIS \leftrightarrow DS
Notations

Black nodes: MIS nodes.
Blue nodes: nodes connecting black nodes.
Grey nodes: dominatee nodes.
Black nodes + Blue nodes = dominating nodes (CDS)
For each node u

$r(u) = \text{the number of 2-hop-away neighbors} - d(u)$

where $d(u)$ is the degree of node u
Node u with the smallest $<r, \text{deg}, \text{id}>$ within its neighborhood becomes black and broadcast a BLACK message where \text{deg} is the effective degree.
r-CDS (Cont.)

If v receives a BLACK message from u, v becomes grey and broadcasts a GREY message containing (v, u).
r-CDS (Cont.)

- black node w receives a GREY message (v, u)
- w not connected to u

Color v blue
r-CDS (Cont.)

- v has received a GREY message (x, y)
- v receives a BLACK message from u
- y & u not connected

Color v and x blue
Analysis

Lemma 1 All the black nodes form an MIS.

- No 2 adjacent white nodes become black simultaneously.
- All the neighbors of a black node become grey.
- Black nodes form an independent set.
- Grey nodes can no longer become black.
Lemma 2 Let d denote the number of hops between any pair of black nodes, then $d=2$ or $d=3$.

- Black nodes form an MIS.
- A grey node must have a black neighbor.
Analysis (Cont)

Theorem 1 All the black nodes and blue nodes from a CDS.

Theorem 2 The time complexity is $O(\Delta)$ where Δ is the maximum node degree and the message complexity is $O(n \Delta^2)$.
Lemma 3: Let S be any MIS of a UDG G. For any node u in S, the number of the nodes in S that are at most three hops away from u is at most 42.

$$D = \frac{nd^2\pi}{4A(Q)}$$

$$D \leq \left[1 - \frac{\sqrt{3}}{2} + \sqrt{\frac{3}{4} + \frac{2\sqrt{3}}{\pi}(n - 1)} \right]^2$$

where D is a maximum density of packing n equal circles in another larger circle.
Analysis (Cont)

Theorem 3 The performance ratio of r-CDS is 172.

- The size of any MIS S in a graph is at most $4 \cdot \text{opt} + 1$ where opt is the size of any optimal CDS of the graph.

- $|C| \leq 2 \cdot 42 |S|/2 + |S| \leq 172 \cdot \text{opt} + 43$