Chapter 4: Data Warehousing and On-line Analytical Processing

- Data Warehouse: Basic Concepts
- Data Warehouse Modeling: Data Cube and OLAP
- Data Warehouse Design and Usage
- Data Warehouse Implementation
- Summary

What is a Data Warehouse?

- Defined in many different ways, but not rigorously.
 - A decision support database that is maintained separately from the organization’s operational database
 - Support information processing by providing a solid platform of consolidated, historical data for analysis.
 - “A data warehouse is a subject-oriented, integrated, time-variant, and nonvolatile collection of data in support of management’s decision-making process.”—W. H. Inmon
- Data warehousing:
 - The process of constructing and using data warehouses

Data Warehouse—Subject-Oriented

- Organized around major subjects, such as customer, product, sales
- Focusing on the modeling and analysis of data for decision makers, not on daily operations or transaction processing
- Provide a simple and concise view around particular subject issues by excluding data that are not useful in the decision support process
Data Warehouse—Integrated

- Constructed by integrating multiple, heterogeneous data sources
 - relational databases, flat files, on-line transaction records
- Data cleaning and data integration techniques are applied.
 - Ensure consistency in naming conventions, encoding structures, attribute measures, etc. among different data sources
 - E.g., Hotel price: currency, tax, breakfast covered, etc.
 - When data is moved to the warehouse, it is converted.

Data Warehouse—Time Variant

- The time horizon for the data warehouse is significantly longer than that of operational systems
 - Operational database: current value data
 - Data warehouse data: provide information from a historical perspective (e.g., past 5-10 years)
- Every key structure in the data warehouse
 - Contains an element of time, explicitly or implicitly
 - But the key of operational data may or may not contain “time element”

Data Warehouse—Nonvolatile

- A physically separate store of data transformed from the operational environment
- Operational update of data does not occur in the data warehouse environment
 - Does not require transaction processing, recovery, and concurrency control mechanisms
 - Requires only two operations in data accessing:
 - initial loading of data and access of data

OLTP vs. OLAP

<table>
<thead>
<tr>
<th></th>
<th>OLTP</th>
<th>OLAP</th>
</tr>
</thead>
<tbody>
<tr>
<td>users</td>
<td>clerk, IT professional</td>
<td>knowledge worker</td>
</tr>
<tr>
<td>function</td>
<td>day to day operations</td>
<td>decision support</td>
</tr>
<tr>
<td>DB design</td>
<td>application-oriented</td>
<td>subject-oriented</td>
</tr>
<tr>
<td>data</td>
<td>current, up-to-date detailed, flat relational isolated</td>
<td>historical, summarized, multidimensional integrated, consolidated</td>
</tr>
<tr>
<td>usage</td>
<td>repetitive</td>
<td>ad-hoc</td>
</tr>
<tr>
<td>access</td>
<td>read/write</td>
<td>lots of scans</td>
</tr>
<tr>
<td>unit of work</td>
<td>short, simple transaction</td>
<td>complex query</td>
</tr>
<tr>
<td># records accessed</td>
<td>tens</td>
<td>millions</td>
</tr>
<tr>
<td>#users</td>
<td>thousands</td>
<td>hundreds</td>
</tr>
<tr>
<td>DB size</td>
<td>100MB-GB</td>
<td>100GB-TB</td>
</tr>
<tr>
<td>metric</td>
<td>transaction throughput</td>
<td>query throughput, response</td>
</tr>
</tbody>
</table>
Why a Separate Data Warehouse?

- High performance for both systems
 - DBMS—tuned for OLTP: access methods, indexing, concurrency control, recovery
 - Warehouse—tuned for OLAP: complex OLAP queries, multidimensional view, consolidation
- Different functions and different data:
 - **missing data:** Decision support requires historical data which operational DBs do not typically maintain
 - **data consolidation:** DS requires consolidation (aggregation, summarization) of data from heterogeneous sources
 - **data quality:** different sources typically use inconsistent data representations, codes and formats which have to be reconciled
- Note: There are more and more systems which perform OLAP analysis directly on relational databases

Data Warehouse: A Multi-Tiered Architecture

Three Data Warehouse Models

- **Enterprise warehouse**
 - collects all of the information about subjects spanning the entire organization
- **Data Mart**
 - a subset of corporate-wide data that is of value to a specific groups of users. Its scope is confined to specific, selected groups, such as marketing data mart
 - Independent vs. dependent (directly from warehouse) data mart
- **Virtual warehouse**
 - A set of views over operational databases
 - Only some of the possible summary views may be materialized

Extraction, Transformation, and Loading (ETL)

- **Data extraction**
 - get data from multiple, heterogeneous, and external sources
- **Data cleaning**
 - detect errors in the data and rectify them when possible
- **Data transformation**
 - convert data from legacy or host format to warehouse format
- **Load**
 - sort, summarize, consolidate, compute views, check integrity, and build indices and partitions
- **Refresh**
 - propagate the updates from the data sources to the warehouse
Metadata Repository

- **Metadata** is the data defining warehouse objects. It stores:
 - Description of the structure of the data warehouse
 - schema, view, dimensions, hierarchies, derived data defn, data mart locations and contents
 - Operational meta-data
 - data lineage (history of migrated data and transformation path), currency of data (active, archived, or purged), monitoring information (warehouse usage statistics, error reports, audit trails)
 - The algorithms used for summarization
 - The mapping from operational environment to the data warehouse
 - Data related to system performance
 - warehouse schema, view and derived data definitions
 - Business data
 - business terms and definitions, ownership of data, charging policies

Chapter 4: Data Warehousing and On-line Analytical Processing

- Data Warehouse: Basic Concepts
- Data Warehouse Modeling: Data Cube and OLAP
- Data Warehouse Design and Usage
- Data Warehouse Implementation
- Summary

From Tables and Spreadsheets to Data Cubes

- A **data warehouse** is based on a multidimensional data model which views data in the form of a data cube.
- A data cube, such as **sales**, allows data to be modeled and viewed in multiple dimensions
 - **Dimension tables**, such as item (item_name, brand, type), or time(day, week, month, quarter, year)
 - **Fact table** contains **measures** (such as dollars_sold) and keys to each of the related dimension tables
- In data warehousing literature, an n-D base cube is called a **base cuboid**. The top most 0-D cuboid, which holds the highest-level of summarization, is called the **apex cuboid**. The lattice of cuboids forms a data cube.
Conceptual Modeling of Data Warehouses

- Modeling data warehouses: dimensions & measures
 - Star schema: A fact table in the middle connected to a set of dimension tables
 - Snowflake schema: A refinement of star schema where some dimensional hierarchy is normalized into a set of smaller dimension tables, forming a shape similar to snowflake
 - Fact constellations: Multiple fact tables share dimension tables, viewed as a collection of stars, therefore called galaxy schema or fact constellation
A Concept Hierarchy:
Dimension (location)

all
region
 Europe ... North America
 Germany ... Spain ... Canada ... Mexico
 Vancouver ... Toronto
 L. Chan ... M. Wind

dataCube Measures: Three Categories

- **Distributive:** if the result derived by applying the function to \(n \) aggregate values is the same as that derived by applying the function on all the data without partitioning
 - E.g., count(), sum(), min(), max()
- **Algebraic:** if it can be computed by an algebraic function with \(M \) arguments (where \(M \) is a bounded integer), each of which is obtained by applying a distributive aggregate function
 - E.g., avg(), min_N(), standard_deviation()
- **Holistic:** if there is no constant bound on the storage size needed to describe a subaggregate.
 - E.g., median(), mode(), rank()

View of Warehouses and Hierarchies

- **Specification of hierarchies**
 - Schema hierarchy:
 - day < {month < quarter; week} < year
 - Set_grouping hierarchy:
 - \{1..10\} < inexpensive

Multidimensional Data

- **Sales volume as a function of product, month, and region**

Dimensions: Product, Location, Time
Hierarchical summarization paths

- Region
- Industry Region Year
- Category Country Quarter
- Product City Month Week
- Office Day
A Sample Data Cube

Total annual sales of TVs in U.S.A.

Cuboids Corresponding to the Cube

0-D (apex) cuboid
1-D cuboids
2-D cuboids
3-D (base) cuboid

Typical OLAP Operations

- Roll up (drill-up): summarize data
 - by climbing up hierarchy or by dimension reduction
- Drill down (roll down): reverse of roll-up
 - from higher level summary to lower level summary or detailed data, or introducing new dimensions
- Slice and dice: project and select
- Pivot (rotate):
 - reorient the cube, visualization, 3D to series of 2D planes
- Other operations
 - drill across: involving (across) more than one fact table
 - drill through: through the bottom level of the cube to its back-end relational tables (using SQL)
A Star-Net Query Model

- Customer Orders
- Contracts
- Order
- Product Line
- Product Item
- Product Group
- Product
- Promotion
- Organization
- Location
- Region
- City
- Time
- QTRLY
- DAILY
- ANNUALY
- TRUCK
- AIR-EXPRESS
- AIR

Each circle is called a footprint.

Browsing a Data Cube

- Visualization
- OLAP capabilities
- Interactive manipulation

Chapter 4: Data Warehousing and On-line Analytical Processing

- Data Warehouse: Basic Concepts
- Data Warehouse Modeling: Data Cube and OLAP
- Data Warehouse Design and Usage
- Data Warehouse Implementation
- Summary

Design of Data Warehouse: A Business Analysis Framework

- Four views regarding the design of a data warehouse
 - Top-down view
 - allows selection of the relevant information necessary for the data warehouse
 - Data source view
 - exposes the information being captured, stored, and managed by operational systems
 - Data warehouse view
 - consists of fact tables and dimension tables
 - Business query view
 - sees the perspectives of data in the warehouse from the view of end-user
Data Warehouse Design Process

- Top-down, bottom-up approaches or a combination of both
 - Top-down: Starts with overall design and planning (mature)
 - Bottom-up: Starts with experiments and prototypes (rapid)

From software engineering point of view
- Waterfall: structured and systematic analysis at each step before proceeding to the next
- Spiral: rapid generation of increasingly functional systems, short turn-around time, quick turn around

Typical data warehouse design process
- Choose a business process to model, e.g., orders, invoices, etc.
- Choose the grain (atomic level of data) of the business process
- Choose the dimensions that will apply to each fact table record
- Choose the measure that will populate each fact table record

Data Warehouse Development: A Recommended Approach

Data Mart Data Mart
Define a high-level corporate data model

Multi-Tier Data Warehouse

Distributed Data Marts

Data Warehouse

From On-Line Analytical Processing (OLAP) to On Line Analytical Mining (OLAM)

- Why online analytical mining?
 - High quality of data in data warehouses
 - DW contains integrated, consistent, cleaned data
 - Available information processing structure surrounding data warehouses
 - ODBC, OLEDB, Web accessing, service facilities, reporting and OLAP tools
 - OLAP-based exploratory data analysis
 - Mining with drilling, dicing, pivoting, etc.
 - On-line selection of data mining functions
 - Integration and swapping of multiple mining functions, algorithms, and tasks

Data Warehouse Usage

- Three kinds of data warehouse applications
 - Information processing
 - supports querying, basic statistical analysis, and reporting using crosstabs, tables, charts and graphs
 - Analytical processing
 - multidimensional analysis of data warehouse data
 - supports basic OLAP operations, slice-dice, drilling, pivoting
 - Data mining
 - knowledge discovery from hidden patterns
 - supports associations, constructing analytical models, performing classification and prediction, and presenting the mining results using visualization tools
Chapter 4: Data Warehousing and On-line Analytical Processing

- Data Warehouse: Basic Concepts
- Data Warehouse Modeling: Data Cube and OLAP
- Data Warehouse Design and Usage
- Data Warehouse Implementation
- Summary

Efficient Data Cube Computation

- Data cube can be viewed as a lattice of cuboids
 - The bottom-most cuboid is the base cuboid
 - The top-most cuboid (apex) contains only one cell
- How many cuboids in an n-dimensional cube with L levels?
 \[T = \prod_{i=1}^{n} (L_i + 1) \]
- Materialization of data cube
 - Materialize every (full materialization), none (no materialization), or some (partial materialization)
- Selection of which cuboids to materialize
 - Based on size, sharing, access frequency, etc.

The “Compute Cube” Operator

- Cube definition and computation in DMQL
 - define cube sales [item, city, year]: sum (sales_in_dollars)
 - compute cube sales
- Transform it into a SQL-like language (with a new operator cube by, introduced by Gray et al.’96)
 - SELECT item, city, year, SUM (amount)
 FROM SALES
 CUBE BY item, city, year
- Need compute the following Group-Bys
 - (date, product, customer), (date, product), (date, customer), (product, customer), (date), (product), (customer)

Indexing OLAP Data: Bitmap Index

- Index on a particular column
- Each value in the column has a bit vector: bit-op is fast
- The length of the bit vector: # of records in the base table
- The i-th bit is set if the i-th row of the base table has the value for the indexed column
- not suitable for high cardinality domains
- A recent bit compression technique, Word-Aligned Hybrid (WAH), makes it work for high cardinality domain as well [Wu, et al. TODS’06]

<table>
<thead>
<tr>
<th>Cust</th>
<th>Region</th>
<th>Type</th>
<th>RecID</th>
<th>Asia</th>
<th>Europe</th>
<th>America</th>
<th>RecID</th>
<th>Retail</th>
<th>Dealer</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1</td>
<td>Asia</td>
<td>Retail</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>C2</td>
<td>Europe</td>
<td>Dealer</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>C3</td>
<td>Asia</td>
<td>Dealer</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>C4</td>
<td>America</td>
<td>Retail</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>4</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>C5</td>
<td>Europe</td>
<td>Dealer</td>
<td>5</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>5</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>
Indexing OLAP Data: Join Indices

- Join index: \(J(R\text{-id}, S\text{-id}) \) where \(R \rightarrow S \) (\(S\text{-id}, ... \))
- Traditional indices map the values to a list of record ids
 - It materializes relational join in JI file and speeds up relational join
- In data warehouses, join index relates the values of the dimensions of a start schema to rows in the fact table.
 - E.g. fact table: \(Sales \) and two dimensions city and product
 - A join index on city maintains for each distinct city a list of R-IDs of the tuples recording the Sales in the city
- Join indices can span multiple dimensions

Efficient Processing OLAP Queries

- Determine which operations should be performed on the available cuboids
 - Transform drill, roll, etc. into corresponding SQL and/or OLAP operations, e.g., dice = selection + projection
- Determine which materialized cuboid(s) should be selected for OLAP op.
 - Let the query to be processed be on \(\{brand, province_or_state\} \) with the condition \(\text{"year} = 2004\text{"} \), and there are 4 materialized cuboids available:
 1) \(\{year, item_name, city\} \)
 2) \(\{year, brand, country\} \)
 3) \(\{year, brand, province_or_state\} \)
 4) \(\{item_name, province_or_state\} \) where \(\text{year} = 2004 \)
 - Which should be selected to process the query?

OLAP Server Architectures

- **Relational OLAP (ROLAP)**
 - Use relational or extended-relational DBMS to store and manage warehouse data and OLAP middle ware
 - Include optimization of DBMS backend, implementation of aggregation navigation logic, and additional tools and services
 - Greater scalability
- **Multidimensional OLAP (MOLAP)**
 - Sparse array-based multidimensional storage engine
 - Fast indexing to pre-computed summarized data
- **Hybrid OLAP (HOLAP)** (e.g., Microsoft SQLServer)
 - Flexibility, e.g., low level: relational, high-level: array
- **Specialized SQL servers** (e.g., Redbricks)
 - Specialized support for SQL queries over star/snowflake schemas

Chapter 4: Data Warehousing and On-line Analytical Processing

- Data Warehouse: Basic Concepts
- Data Warehouse Modeling: Data Cube and OLAP
- Data Warehouse Design and Usage
- Data Warehouse Implementation
- Summary
Summary

- Data warehousing: A multi-dimensional model of a data warehouse
 - A data cube consists of dimensions & measures
 - Star schema, snowflake schema, fact constellations
 - OLAP operations: drilling, rolling, slicing, dicing and pivoting

- Data Warehouse Architecture, Design, and Usage
 - Multi-tiered architecture
 - Business analysis design framework
 - Information processing, analytical processing, data mining, OLAM (Online Analytical Mining)

- Implementation: Efficient computation of data cubes
 - Partial vs. full vs. no materialization
 - Indexing OLAP data: Bitmap index and join index
 - OLAP query processing
 - OLAP servers: ROLAP, MOLAP, HOLAP

References (I)

- S. Agarwal, R. Agrawal, P. M. Deshpande, A. Gupta, J. F. Naughton, R. Ramakrishnan, and S. Sarawagi. On the computation of multidimensional aggregates. VLDB’96
- D. Agrawal, A. E. Abbadi, A. Singh, and T. Yurek. Efficient view maintenance in data warehouses. SIGMOD’97
- S. Chaudhuri and U. Dayal. An overview of data warehousing and OLAP technology. ACM SIGMOD Record, 26:55-74, 1997
- V. Harinarayan, A. Rajaraman, and J. D. Ullman. Implementing data cubes efficiently. SIGMOD’96

References (II)

- P. O’Neil and D. Quass. Improved query performance with variant indexes. SIGMOD’97
- A. Shoshani. OLAP and statistical databases: Similarities and differences. PODS’93.
- S. Sarawagi and M. Stonebraker. Efficient organization of large multidimensional arrays. ICDE’94
- J. Widom. Research problems in data warehousing. CIKM’95.
Compression of Bitmap Indices

- Bitmap indexes must be compressed to reduce I/O costs and minimize CPU usage—majority of the bits are 0’s
- Two compression schemes:
 - Byte-aligned Bitmap Code (BBC)
 - Word-Aligned Hybrid (WAH) code
- Time and space required to operate on compressed bitmap is proportional to the total size of the bitmap
- Optimal on attributes of low cardinality as well as those of high cardinality.
- WAH outperforms BBC by about a factor of two