Ch 2 Fig. 2.14 Slides: tails for n = 0, works for n = 1

Parallelization: max value in set

<table>
<thead>
<tr>
<th>n x n grid</th>
</tr>
</thead>
</table>

Pattern-matching problem: DNA Ch. 2 slides

ATCG looking for TGC

```
ATTTT G CCC AT
```

"sliding window"

\[T_1, T_2, T_3, T_4, T_5, T_6, T_7 \]

```
TGC
```

\[m = 3 \]

\[P_1, P_2, P_3 \]

Main idea: Scan the text characters left to right, for each possible starting location, try matching the pattern.
Parts of algorithm:

1. Slide pattern along the text, aligning it with each position.
2. Given a particular alignment, determine if there is a match at that location.

Get values for \(n \) and \(m \), size of text and pattern.
Set \(k \), the starting location for the attempted match, to 1.

While \(k \leq (n-m+1) \) do

\[
\begin{align*}
K &\leq (n-m+1) \quad \text{prevents pattern from "falling off" text} \\
P_1 &\quad P_2 \quad P_3 \\
T_k &\quad T_{k+1} \quad T_{k+2} \quad T_{k+3} \quad T_{k+m-1} \\
k+(m-1) &\leq n \\
k &\leq n-(m-1) \\
k &\leq n-m+1
\end{align*}
\]

Set value of \(i \) to 1.
Set value of MIS MATCH to NO.
While both \(i \leq m \) and (MIS MATCH = NO) do
If \(P_i \neq T_{k+(i-1)} \) then
Set MIS MATCH to YES.
Else
increment \(i \) by 1 (move to next character)
End loop.
If MISMATCH = NO then
 Print 'There is a match at position'
 Print value of k
 Increment k by 1
End loop
Stop

Finds all instances of pattern (does not stop if pattern found)

"nested loop"

If \(m = n \), algorithm will execute loop once

If \(m > n \), algorithm will not execute loops