Chapter 1
An Introduction to Computer Science
Introduction

• Misconceptions
 – Computer science is:
 • The study of computers
 • The study of how to write computer programs
 • The study of the uses and applications of computers and software
The Definition of Computer Science

• **Computer science** is the study of algorithms, including:
 – Their formal and mathematical properties
 – Their hardware realizations
 – Their linguistic realizations
 – Their applications

• Abu Ja’far Muhammad ibn Musa Al-Khowarizmi (AD 780-850?), Persian Author
The Definition of Computer Science (continued)

• Algorithm
 – Informally, “an ordered sequence of instructions that is guaranteed to solve a specific problem.”

• Operations used to construct algorithms
 – Sequential operations
 – Conditional operations
 – Iterative operations
FIGURE 1.1

Step 1 If the clock and calendar are not correctly set, then go to page 9 of the instruction manual and follow the instructions there before proceeding to Step 2

Step 2 Place a blank disc into the DVR disc slot

Step 3 Repeat Steps 4 through 7 for each program that you want to record

Step 4 Enter the channel number that you want to record and press the button labeled CHAN

Step 5 Enter the time that you want recording to start and press the button labeled TIME-START

Step 6 Enter the time that you want recording to stop and press the button labeled TIME-FINISH. This completes the programming of one show

Step 7 If you do not want to record anything else, press the button labeled END-PROG

Step 8 Turn off your DVR. Your DVR is now in TIMER mode, ready to record

Programming your DVR: An example of an algorithm
FIGURE 1.2

Given: \(m \geq 1 \) and two positive numbers each containing \(m \) digits, \(a_{m-1} a_{m-2} \ldots a_0 \) and \(b_{m-1} b_{m-2} \ldots b_0 \).

Wanted: \(c_m c_{m-1} c_{m-2} \ldots c_0 \), where \(c_m c_{m-1} c_{m-2} \ldots c_0 = (a_{m-1} a_{m-2} \ldots a_0) + (b_{m-1} b_{m-2} \ldots b_0) \)

Algorithm:

Step 1 Set the value of *carry* to 0.

Step 2 Set the value of *i* to 0.

Step 3 While the value of *i* is less than or equal to \(m - 1 \), repeat the instructions in Steps 4 through 6.

Step 4 Add the two digits \(a_i \) and \(b_i \) to the current value of *carry* to get \(c_i \).

Step 5 If \(c_i \geq 10 \), then reset \(c_i \) to \((c_i - 10)\) and reset the value of *carry* to 1; otherwise, set the new value of *carry* to 0.

Step 6 Add 1 to *i*, effectively moving one column to the left.

Step 7 Set \(c_m \) to the value of *carry*.

Step 8 Print out the final answer, \(c_m c_{m-1} c_{m-2} \ldots c_0 \).

Step 9 Stop.

Algorithm for adding two \(m \)-digit numbers
The Definition of Computer Science (continued)

• Why are formal algorithms so important in computer science?
 – If we can specify an algorithm to solve a problem, then we can automate its solution

• Computing agent
 – Machine, robot, person, or thing carrying out the steps of the algorithm

• Unsolved problems
 – Some problems are unsolvable, some solutions are too slow, and some solutions are not yet known
Algorithms

• The Formal Definition of an Algorithm
 – A well-ordered collection of unambiguous and effectively computable operations that, when executed, produces a result and halts in a finite amount of time

Shampooing instructions:
 – STEP 1 Wet hair
 – STEP 2 Lather
 – STEP 3 Rinse
 – STEP 4 Repeat
Algorithms (continued)

• Well-ordered collection
 – Upon completion of an operation we always know which operation to do next

• Ambiguous statements
 – Go back and do it again (Do what again?)
 – Start over (From where?)
Algorithms (continued)

• Unambiguous operation, or **primitive**
 – Can be understood by the computing agent without having to be further defined or simplified

• It is not enough for an operation to be understandable
 – It must also be *doable* (**effectively computable**) by the computing agent

Finding 100th Prime Number?

• STEP 1 Generate a list L of all the prime numbers: L_1, L_2, L_3, \ldots
• STEP 2 Sort the list L in ascending order
• STEP 3 Print out the 100th element in the list, L_{100}
• STEP 4 Stop
Algorithms (continued)

• Algorithm
 – Result must be produced after the execution of a finite number of operations
 – Result may be a number, text, a light, picture, sound, or a change in the computing agent’s environment

• Infinite loop
 – Runs forever
 – Usually a mistake
<table>
<thead>
<tr>
<th>Step</th>
<th>Operation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Wet your hair</td>
</tr>
<tr>
<td>2</td>
<td>Set the value of WashCount to 0</td>
</tr>
<tr>
<td>3</td>
<td>Repeat Steps 4 through 6 until the value of WashCount equals 2</td>
</tr>
<tr>
<td>4</td>
<td>Lather your hair</td>
</tr>
<tr>
<td>5</td>
<td>Rinse your hair</td>
</tr>
<tr>
<td>6</td>
<td>Add 1 to the value of WashCount</td>
</tr>
<tr>
<td>7</td>
<td>Stop, you have finished shampooing your hair</td>
</tr>
</tbody>
</table>

A correct solution to the shampooing problem
FIGURE 1.4

<table>
<thead>
<tr>
<th>Step</th>
<th>Operation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Wet your hair</td>
</tr>
<tr>
<td>2</td>
<td>Lather your hair</td>
</tr>
<tr>
<td>3</td>
<td>Rinse your hair</td>
</tr>
<tr>
<td>4</td>
<td>Lather your hair</td>
</tr>
<tr>
<td>5</td>
<td>Rinse your hair</td>
</tr>
<tr>
<td>6</td>
<td>Stop, you have finished shampooing your hair</td>
</tr>
</tbody>
</table>

Another correct solution to the shampooing problem
Algorithms (continued)

• The Importance of Algorithmic Problem Solving
 – “Industrial revolution” of 19th century
 • Mechanized and automated repetitive physical tasks
 – “Computer revolution” of the 20th and 21st centuries
 • Mechanized and automated repetitive mental tasks
 • Through algorithms and computer hardware
Quick Quiz 1

• 1. Which kind of operation is “Add water until the cup is full”?
• 2. (True or false) All algorithms are known, computer scientists simply select the correct algorithm for each new problem.
• 3. Operations that a given computing agent can perform are called ______________.
• 4. List at least two flaws in the “algorithm” below.
 • Given a jar full of jelly beans,
 • Pick a jelly bean from the jar
 • Add one to the total count
 • Repeat until the jar is empty
Food for Thought - Practice Problems

Get a copy of the instructions that describe how to do the following and decide if they are algorithms:

- Register for classes at the beginning of the semester.
- Use the online computer catalog to see what is available in the college library on a given subject.
- Use the copying machine in your building.
- Log on to the World Wide Web.
- Add someone as a friend to your Facebook account.
• Seventeenth century: automation/simplification of arithmetic for scientific research
 – John Napier invented logarithms as a way to simplify difficult mathematical computations (1614)
 – The first slide rule appeared around 1622
 – Blaise Pascal designed and built a mechanical calculator named the Pascaline (1672)
 – Gottfried Leibnitz constructed a mechanical calculator called Leibnitz’s Wheel (1674)
The Pascaline, one of the earliest mechanical calculators

Source: Computer History Museum
A Brief History of Computing
The Early Period: Up to 1940 (continued)

• Seventeenth century devices
 – Could represent numbers
 – Could perform arithmetic operations on numbers
 – Did not have a memory to store information
 – Were not programmable (a user could not provide a sequence of actions to be executed by the device)
A Brief History of Computing

The Early Period: Up to 1940 (continued)

• Nineteenth century devices
 – Joseph Jacquard designed an automated loom that
 used punched cards to create patterns (1801)
 – Herman Hollerith (1880s on)
 • Designed programmable card-processing machines
 to read, tally, and sort data on punched cards for the
 U.S. Census Bureau
 • Founded company that became IBM in 1924
 – Computer Tabulating Recording Company -> IBM
A Brief History of Computing
The Early Period: Up to 1940 (continued)

• Charles Babbage
 – Difference Engine designed and built in 1823
 • Could do addition, subtraction, multiplication, and division to six significant digits
 • Could solve polynomial equations and other complex mathematical problems

 – Analytical Engine, designed but never built
 • Mechanical, programmable machine similar to a modern computer
A Brief History of Computing
The Early Period: Up to 1940 (continued)

Babbage’s Term Modern Terminology

- **mill** → arithmetic/logic unit
- **store** → memory
- **operator** → processor
- **output unit** → input/output

Ada Augusta Byron – First programmer
A Brief History of Computing
The Early Period: Up to 1940 (continued)

• Nineteenth century devices
 – Were mechanical, not electrical
 – Had many features of modern computers:
 • Representation of numbers or other data
 • Operations to manipulate the data
 • Memory to store values in a machine-readable form
 • Programmable: sequences of instructions could be pre-designed for complex operations
A Brief History of Computing
The Birth of Computers: 1940–1950

• ABC system (Atanasoff-Berry Computer) (1942)
• Mark I (1944)
 – Electromechanical computer used a mix of relays, magnets, and gears to process and store data (binary, memory 72, * 4 s)
• Colossus (1943)
 – General-purpose computer built by Alan Turing for British Enigma project - German Enigma code
• ENIAC (Electronic Numerical Integrator and Calculator) (1946) - Eckert and Mauchly
 – First publicly known fully electronic computer
 – Firing tables, 18k tubes, 100X10’, 30 ton, * 4 ms)
Photograph of the ENIAC computer
A Brief History of Computing
The Birth of Computers: 1940–1950 (continued)

• John Von Neumann
 – Proposed a radically different computer design based on a model called the *stored program computer*
 – Research group at the University of Pennsylvania built one of the first stored program computers, called EDVAC, in 1951
 – UNIVAC-1, a version of EDVAC, *first commercially-sold computer* – Echert/ Mauckley
 – Virtually all modern computers use the *Von Neumann architecture*
A Brief History of Computing
The Modern Era: 1950 to the Present

• First generation of computing (1950-1957)
 – Similar to EDVAC
 – Vacuum tubes for processing and storage
 – Large, expensive, and delicate
 – Required trained users and special environments

• Second generation (1957–1965)
 – Transistors and magnetic cores instead of vacuum tubes
 – Era of FORTRAN and COBOL: high-level programming languages
 – The occupation called programmer was born.
A Brief History of Computing
The Modern Era: 1950 to the Present (continued)

• Third generation (1965 to 1975)
 – Era of the integrated circuit
 – Birth of the first minicomputer: desk-sized, not room-sized computers – PDP-1 (DEC Corp)
 – Birth of the software industry

• Fourth generation (1975 to 1985)
 – The first microcomputers: desktop machines (Altair 8800 – 1975)
 – Development of widespread computer networks
 – Electronic mail, graphical user interfaces, and embedded systems
A Brief History of Computing
The Modern Era: 1950 to the Present (continued)

• Source: University of Hawai’i at Hilo Graphics Services
A Brief History of Computing
The Modern Era: 1950 to the Present (continued)

• Fifth generation (1985–?)
 – Massively parallel processors capable of quadrillions \(10^{15}\) of computations per second
 • Non-Von-Neuman Architectures
 – Handheld digital devices
 – Powerful multimedia user interfaces incorporating sound, voice recognition, images, video, television
 – Wireless communications
 – Massive storage devices
 – Ubiquitous computing
Organization of the Text

Computer science is the study of algorithms including:

1. Their formal and mathematical properties,
2. Their hardware realizations,
3. Their linguistic realizations,
4. Their applications.

Levels of the text:

1. **Level 1:** The Algorithmic Foundations of Computer Science
2. **Level 2:** The Hardware World
 - Level 3: The Virtual Machine
3. **Level 4:** The Software World
4. **Level 5:** Applications
5. **Level 6:** Social Issues
Summary

• Computer science is the study of algorithms
• An algorithm is a well-ordered collection of unambiguous and effectively computable operations that, when executed, produces a result and halts in a finite amount of time
• If we can specify an algorithm to solve a problem, then we can automate its solution
• Computers developed from mechanical calculating devices to modern electronic marvels of miniaturization