2 STRATEGY DIVIDE-AND-CONQUER

• Divide Problem P into smaller problem P_1, P_2, \ldots, P_k.

• Solve problems P_1, P_2, \ldots, P_k to obtain solutions S_1, S_2, \ldots, S_k.

• Combine solution S_1, S_2, \ldots, S_k to get the final solution.

Subproblems P_1, P_2, \ldots, P_k are solved recursively using divide-and-conquer.

Examples: Quicksort and mergesort.
3 STRATEGY GREEDY

Solution ← Φ

for i ← 1 to n do

SELECT the next input x.

If \{x\} ∪ Solution is FEASIBLE then

solution ← COMBINE(Solution, x)

- SELECT appropriately finds the next input to be considered.
- A FEASIBLE solution satisfies the constraints required for the output.
- COMBINE enlarges the current solution to include a new input.

Examples: Max finding, Selection Sort, and Kruskal’s Smallest Edge First algorithm for Minimum Spanning Tree.
STRATEGY DYNAMIC PROGRAMMING

• Fibonacci Numbers:

\[F_n = F_{n-1} + F_{n-2} \]

\[F_1 = F_0 = 1. \]

— Recursive solution requires exponential time: has overlapping subproblems.

— Bottom-up iterative solution is linear – compute once, store, and use many times.
4.1 Matrix Sequence Multiplication

• **eg. 1:**

\[A_{30 \times 1} \times B_{1 \times 40} \times C_{40 \times 10} \times D_{10 \times 25} \times E_{25 \times 1} \]

— Left to right evaluation requires more than 12K multiplications.

— \((A \times (B \times C) \times (D \times E))\) needs only 690 multiplications (minimum needed).

— **Greedy Algorithm: Largest Common Dimension First**

• **eg. 2:**

\[A_{1 \times 2} \times B_{2 \times 3} \times C_{3 \times 4} \times D_{4 \times 5} \times E_{5 \times 6} \]

— Largest Common Dimension First imposes following order:

\[(A \times (B \times (C \times (D \times E)))) \]

which needs 240 multiplications.
— Best order:

\[(((A \times B) \times C) \times D) \times E) \]

which needs 68 multiplications.

— Another Greedy Algorithm: Smallest Common Dimension First but did not work for eg. 1.
4.2 Divide and Conquer Solution

Input:

\[
\begin{align*}
A_1 & \quad * & A_2 & \quad \ldots & \quad * & A_n \\
d_0 & \quad * & d_1 & \quad \ldots & \quad * & d_{n-1} \quad * \quad d_n
\end{align*}
\]

Output: A paranthesesization of the input sequence resulting in minimum number of multiplications needed to multiply the \(n \) matrices.

- **Subgoal:** Ignore Structure of Output (order of paranthesesization), focus on obtaining a numerical solution (minimum number of multiplications)

- Define \(M[i, j] = \) the minimum number of multiplications needed to compute

\[
A_i \quad * \quad A_{i+1} \quad \ldots \quad * \quad A_j
\]

for \(i \leq j \leq n \)

- Subgoal is to obtain \(M[1, n] \).
e.g. For,

\[A_1^{30x1} \times A_2^{1x40} \times A_3^{40x10} \times A_4^{10x25} \times A_5^{25x1} \]

\[M[1, 1] = 0, \quad M[1, 2] = 1200, \quad M[1, 5] = 690 \]
4.3 Recursive Formulation of $M[i, j]$

- $A_1 \times A_2 = (A_1) \times (A_2)$
 - Partition at $k=1$: Subproblems (A_1) and (A_2)
 - cost of (A_1) is $M[1, 1]$ and that of (A_2) is $M[2, 2]$
 - cost of combining (A_1) and (A_2) into one is $d_0 \times d_1 \times d_2$.
 - $M[1, 2] = M[1, 1] + M[2, 2] + d_0 \times d_1 \times d_2$.
 - $M[1, 2] = 0 + 0 + 1200 = 1200$.

- $A_2 \times A_3 \times A_4 = (A_2) \times (A_3 \times A_4) (k=2)$
 Or, $(A_2 \times A_3) \times A_4 (k=3)$.

 - $k = 2$: cost $= M[2, 2] + M[3, 4] + d_1 \times d_2 \times d_4$
 - $k = 3$: cost $= M[2, 3] + M[4, 4] + d_1 \times d_3 \times d_4$
 - $M[2, 4] = \min(M[2, 2] + M[3, 4] + d_1 \times d_2 \times d_4, M[2, 3] + M[4, 4] + d_1 \times d_3 \times d_4)$
In short, $M[2, 4] = \min_{2 \leq k \leq 3} (M[2, k] + M[k, 4] + d_1d_kd_4)$

- $A_2 \times A_3 \times A_4 \times A_5$

 $= (A_2) \times (A_3 \times A_4 \times A_5) \ (k=2)$

 Or, $= (A_2 \times A_3) \times (A_4 \times A_5) \ (k=3)$

 Or, $= (A_2 \times A_3 \times A_4) \times (A_5) \ (k=4)$

- In general, by factoring $(A_i \times A_{i+1} \times \cdots \times A_j)$ at kth index position into $(A_i \times A_{i+1} \times \cdots \times A_k)$ and $(A_{k+1} \times \cdots \times A_j)$ need $M[i, k] + M[k + 1, j]$ multiplications and creates matrices of dimensions $d_{i-1} \times d_k$ and $d_k \times d_j$. These two matrices need additional $d_{i-1} \times d_k \times d_j$ multiplications to combine.
4.4 Recursive Formula and Time Taken

- Recursively,

\[M[i, j] = \min_{i \leq k \leq j-1} \left(M[i, k] + M[k + 1, j] + d_{i-1}d_kd_j \right) \]

\[M(i, i) = 0 \]

- Optimal Substructure
• We can recursively solve for
\[M[1, n] = \]
\[\min_{1 \leq k \leq n-1} (M[1, k] + M[k + 1, n] + d_0d_kd_n) \]
\[= \min[M[1, 1] + M[2, n] + d_0d_1d_n, \]
\[M[1, 2] + M[3, n] + d_0d_2d_n, \]
\[M[1, 3] + M[4, n] + d_0d_3d_n, \]
\[\vdots \]
\[M[1, n - 1] + M[n, n] + d_0d_{n-1}d_n \]

• Time Complexity:
\[T_n = n + T_1 + T_{n-1} \]
\[+ T_2 + T_{n-2} \]
\[+ T_3 + T_{n-3} \]
\[\vdots \]
\[+ T_{n-2} + T_2 \]
\[+ T_{n-1} + T_1 \]
\[T_n = n + 2T_1 + 2T_2 + \cdots + 2T_{n-1} \quad (1) \]
\[T_{n-1} = n - 1 + 2T_1 + 2T_2 + \cdots + 2T_{n-2} \quad (2) \]

Subtracting (I)-(II) yields

\[T_n - T_{n-1} = 1 + 2T_{n-1} \]
\[T_n = 1 + 3T_{n-1} \]
\[= 1 + 3(1 + 3T_{n-2}) \]
\[T_n = 1 + 3 + 3^2 + 3^3 + \cdots + 3^{n-1}T_1 \]
\[= 1 + 3 + 3^2 + 3^3 + \cdots + 3^{n-2} \]
• Recursive Solution is exponential time $\Omega(3^{n-2})$
• Space $O(n)$ stack depth.

• **Overlapping subproblems**: e.g. Recursion tree for $M[1, 4]$.

 26 recursive calls for just 10 subproblems

 $M[1, 1], M[2, 2], M[3, 3], M[4, 4], M[1, 2], M[2, 3], M[3, 4]$
So we turn to dynamic Programming,

- the same formulation
- approach the problem bottom-to-top
- find a suitable table to store the sub-solutions.

How many sub-solutions do we have?

- $M[1, 1], M[2, 2], M[3, 3], \ldots, M[n, n] \quad n$
- $M[1, 2], M[2, 3], \ldots, M[n - 1, n] \quad n - 1$
- $M[1, 3], M[2, 4], \ldots, M[n - 2, n] \quad n - 2$
- \vdots
- $M[1, n - 1], M[2, n] \quad 2$
- $M[1, n] \quad 1$

\[\frac{n(n-1)}{2} \]

\Rightarrow we need $O(n^2)$ space
Matrix Parenthesization Order

M,Factor: Matrix

for $i \leftarrow 1$ to n do $M[i, i] \leftarrow 0$
 /* main diagonal*/
for diagonal $\leftarrow 1$ to $n - 1$ do
 for $i \leftarrow 1$ to n—diagonal do
 $j = i + \text{diagonal}$
 $M[i, j] = \min_{i \leq k \leq j - 1}(M[i, k] + M[k + 1, j]$
 $+ d_{i-1}d_kd_j)$
 Factor$[i, j] = k$ that gave the minimum value
 for $M[i, j]$.
 endfor
endfor
4.6 Work out

\[A_{130x1} X A_{21x40} X A_{340x10} X A_{410x25} X A_{525x1} \]
\[M[1, 2] = \min_{1 \leq k \leq 1} [M[i, k] + M[k + 1, j] + d_{i-1}d_k d_j] \]
\[= \min[M[1, 1] + M[2, 2] + d_0d_1d_2] \]
\[= 0 + 0 + 30 \times 1 \times 40 \]
\[= 1200 \]

\[M[1, 3] = \min_{1 \leq k \leq 3} [M[i, k] + M[k + 1, j] + d_{i-1}d_k d_j] \]
\[= \min[M[1, 1] + M[2, 3] + d_0d_1d_3, M[1, 2] + M[3, 3] + d_0d_2d_3] \]
\[= \min[0 + 400 + 30 \times 1 \times 10, 1200 + 0 + 30 \times 40 \times 10] \]
\[= \min[700, 12000 + 1200] \]
\[= 700 \]
\[M[2, 4] = \min[M[i, k] + M[k + 1, j] + d_{i-1}d_kd_j] \]
\[2 \leq k \leq 3 \]
\[= \min[M[2, 2] + M[3, 4] + d_1d_2d_4, \]
\[= \min[0 + 10000 + 1 \times 40 \times 25, 400 + 0 + 1 \times 10 \times 25] \]
\[= \min[10100, 650] = 650 \]

\[M[3, 5] = \min[M[i, k] + M[k + 1, j] + d_{i-1}d_kd_j] \]
\[3 \leq k \leq 4 \]
\[= \min[M[3, 3] + M[4, 5] + d_2d_3d_5, \]
\[= \min[0 + 250 + 40 \times 10 \times 1, 10000 + 0 + 40 \times 25 \times 1] \]
\[= \min[650, -] = 650 \]

\[M[1, 4] = \min[M[1, 1] + M[2, 4] + d_0d_1d_4, \]
\[M[1, 2] + M[3, 4] + d_0d_2d_4, \]
\[= \min[0 + 650 + 30 \times 1 \times 25, \]
\[1200 + 10000 + 30 \times 40 \times 25, \]
\[700 + 0 + 30 \times 10 \times 25] \]
\[= \min[1400, -, -] = 1400 \]
5 DYNAMIC PROGRAMMING REQUIREMENTS

Requirements: a) Optimal Substructure
 b) Overlapping subproblem

Steps: 1) Characterize the structure of an optimal solution
 2) Formulate a recursive solution
 3) Compute the value of an opt. solution bottom-up. (get value rather than the structure)
 4) Construct an optimal solution (structure) from computed information.

Memoization: Top-down, compute and store first time, reuse subsequent times.
5.1 Observation 1: Optimal Substructure

The optimal solution containings optimal subsolutions.
Recursion Tree (do not wide yet)
Depth? $\theta(m + n)$

outdegree 3 \Rightarrow number of nodes \approx amount of work in recursive calls is $\Theta(3^{m+n})$
5.2

Observation 2: Overlapping Subproblems

- wide some repeated problems, as above.
- a few problems, but many recursive instances unlike good divide-and-conquer where problems are independent.
- LCS has an mn distinct problems.
5.3 Memorize

(to deal with overlapping problems)

- after computing solution to a subproblem, sort in a table. Subsequent call-do table lookup.
- Time $O(mn)$
 — each problem is solved once and used twice.
 — see in figure for 1, 2 or 2, 3
 — might not need to solve all subproblem, only those needed.
5.4 Dynamic Programming Implementation

- Compute table bottom-up instead of starting at \((m, n)\), start at \((1, 1)\)

- Demonstrate algorithm

\[
\begin{align*}
\text{— time} &= \theta(m, n) \\
\text{— space} &= \theta(\min(m, n))
\end{align*}
\]

- Initialize top row & left column to 0
• Produce from top row, left to right, $x[i] = y[j]$
fill diagonal neighbor+1 & chaw . slre fill max
of the other neighbors.