Overview

- MOTIVATION
- ALGO DEF.
- ANALYSIS - Seq. Search
- TIME
 WORK DONE
 WORST, AV CASE
- SPACE
- OPTIMALITY
- ORDER NOTATION
- Design - Bin Search.
• MOTIVATION

— Algorithms: How to do things on a computer?
— Other application areas study specialized algorithms.
 e.g.
 Operating Systems
 Compiler Design
 Artificial Intelligence
 Data Base Management Systems
— Algorithm Design Techniques
 Divide and conquer, greedy, Dynamic Programming etc.
— Basic Algorithms
 sorting, graph algo, matrix multiplication, NP-Complete problems, parallel algos.
HISTORY
Phrase Algorithm: Persian Author

— Abu Jafar Mohammed ibn Musa *al Khowarizmi* (825 AD)
— wrote a Math textbook
— *al Khowarizmi*: from the town of Khowarazm (now Khiva, Uzbekistan)

ALGORITHM DEFINITION
An algorithm is composed of a finite number of steps, each of which may require one or more operations.

— each OPERATION executable on a computer.
— compute $5/0$ is not WELL DEFINED.

— algorithms must TERMINATE after a finite number of operations.
— PROCEDURE: a nonterminating algorithm.
 e.g. OS.
DESIGN & ANALYSIS

• GOAL - Distinguish Algorithms.

• TIME - Computer Dependent.
 AMOUNT OF WORK - COST
 — proportional to the number of basic operations.
 — computer independent.
 e.g. matrix multiplication
 basic operation - multiplication & addition.

Example Problem: Sequential Search

Problem: Given an array $L[1..n]$, containing n DISTINCT entries, find the index of x, if $x \in L$, else return 0.

Input: array L, array size n, search item x.

Output: If $x \in L$ then index of x in L, else 0.

Algorithm:
 Abstract Level Description: Scan L left to right looking for x in L & return index.
Pseudocode

1. index ← 1
2. While index ≤ n
3. if $L[index] = x$
4. return (index)
5. else
6. index ← index + 1
7. return (0)

Work done

Steps 1. assignment to a register variable

While loop, if $x = L[k]$

2. k comparisons of register variables
3. k comparisons of x with L entry.
6. $k - 1$ increments of register variable.
Basic Operation

Since step 3 is costliest & other steps are executed no more times, basic operation is *comparison of a memory and a register variable*.

\[
cost = k, \quad \text{if } x = L[k] \\
cost = n, \quad \text{if } x \not\in L
\]
Time Complexity

Best Case time

- $k = 1$, $x = L[1]$, best-case input.
- $B(n) = 1$, as a function of input size.

Worst Case time

- $x = L(n)$ or $x \notin L$
- $W(n) = n$
Average-Case cost?

- Let $x \in L$
- Further, let x is equally likely to be in any position 1 through n.
- E_k: event that $x = L[k]$
- Probability of E_k happening

$$P(E_k) = \frac{1}{n}, \quad 1 \leq k \leq n$$
$$t(E_k) = \text{cost or time when } L[k] = x$$
$$= k$$

Thus, average cost

$$A(n) = P(E_1)t(E_1) + P(E_2)t(E_2) + \ldots + P(E_n)t(E_n)$$
$$= \sum_{k=1}^{n} P(E_k)t(E_k)$$
$$= \sum_{k=1}^{n} \frac{1}{k}$$
$$= \frac{1}{n} \sum_{k=1}^{n} k$$
$$= \frac{1}{n} \left(\frac{n(n + 1)}{2} \right)$$
$$= \frac{n + 1}{2}$$
Did we average over all possible inputs?

Let us allow the possibility that \(x \) might not be in \(L \).

\[
E_0 = \text{event that } x \not\in L
\]

Let

\[
P(x \in L) = q \\
P(x \not\in L) = 1 - q = P(E_0)
\]

For \(k \geq 1 \),

\[
P(E_k) = P(x \in L \text{ and } x = L[k]) \\
= P(x \in L)P(x = L[k] \text{ given that } x \in L) \\
= q \frac{1}{n} = \frac{q}{n}
\]

Thus,

\[
A(n) = \sum_{k=0}^{n} P(E_k) t(E_k) \\
= \sum_{k=1}^{n} P(E_k) t(E_k) + P(E_0) t(E_0) \\
= \sum_{k=1}^{n} \frac{q}{n} k + (1 - q) n \\
= \frac{q}{n} \sum_{k=1}^{n} k + (1 - q) n \\
= \frac{q n(n + 1)}{2} + (1 - q) n \\
= q \frac{n + 1}{2} + (1 - q) n
\]
Thus,

- if $q = 1$, $x \in L$, $A(n) = \frac{n+1}{2}$
- if $q = 0$, $x \notin L$, $A(n) = n$
- if $q = 1/2$,

\[
A(n) = \frac{1}{2} \frac{n + 1}{2} + \frac{1}{2}n
\]
\[
= \frac{n + 1 + 2n}{4n}
\]
\[
= \frac{3n + 1}{4} + \frac{1}{4}
\]

Cost, Work = time complexity.
Space Complexity

Extra space used apart from the input and the program (and the output, if required by specification).

\[S(n) = 1 \]

(1 register variable)

Trade-off between time & space

If number are between 1 and 100, then a prepared index array \(A[1 \ldots 100] \) such that

\[A[i] = j, \text{ if } L[j] = i; \text{ else } A[i] = 0 \]

can yield \(W(n) = O(1) \).

(characteristic array)
Optimality

• Is the sequential search algo. optimal?

• Is there another algo. which solves the same problem using fewer number of comparisons?

• Theorem: In the worst case,

\[W(n) = n \]

• Proof by contradiction

 — If there is another algo B whose \(W(n) < n \), then the element not seen by B may be \(x \) & \(B \) would be incorrect.

 \((O(\log n) \text{ on an ordered list} \& \ O(1) \text{ in a characteristic vector alternatives only when performing multiple searches.}) \)

 — **Lower Bound** on the number of comparisons for searching in an unordered list is \(n \).
Problem Complexity

Def. (Worst case) Complexity of a problem is the min number of operations needed to solve the problem in the worst case using particular resources.

eg. Matrix Multiplication

\[C_{nn} = A_{n \times n} \times B_{n \times n} \]

\[C_{ij} = A_{i1}B_{1j} + A_{i2}B_{2j} + \cdots + A_{in}B_{nj} \]

for \(i \leftarrow 1 \) to \(n \)

for \(j \leftarrow 1 \) to \(n \)

\[C_{ij} \leftarrow 0 \]

for \(k \leftarrow 1 \) to \(n \)

\[C_{ij} = C_{ij} + A_{ik}B_{kj} \]

- Basic operation: Multiplication (addition can be ignored)
- \(W(n) = n^3 \)
- lower bound on number of multiplications = \(n^2 \)
- lower bound on the problem complexity of matrix multiplication = \(n^2 \).
- best algorithm found has complexity \(n^{2.367} \)
Average-case problem complexity

Space complexity of a problem • matrix multiplication $O(1)$

• sorting on comparison model $O(1)$.

• matching parentheses $O(n)$.