2 SEARCHING ON A SORTED LIST

Problem: Given a list $L[1, \ldots, n]$ containing

keys such that $L[i] \leq L[i + 1]$, for $i = 1, 2, \ldots, n - 1$.

Problem is to find out if a given x is in L.

I. Use sorted property on sequential search

Quit search as soon as x is less than $L[i]$ and declare that $x \not \in L$.

Could be shown that

$$A(n) = O(n) \approx n/2$$

$W(n)$ is still $O(n)$.
2.1 Jump Search

2.1.1 Jump Search (Divide and Conquer)

Scan every ith entry of L for a fixed i. Suppose you have established that

$$L[2i] < x < L[3i]$$

then sequentially search $L[2i + 1], L[2i + 2], \ldots, L[3i - 1]$.

$$W(n) = \frac{n}{i} + (i - 1)$$

because there are $\frac{n}{i}$ partitions, and there are $(i - 1)$ items to search sequentially within a partition.

eg. $i = 4, w(n) = n/4 + 3$

$i = 10, w(n) = n/10 + 9$

$i = 100, w(n) = n/100 + 99$

but still $O(n)$ for fixed i.

How about i depending on n?

eg. $i = \log n$

\[w(n) = \frac{n}{\log n} + \log n - 1 = O\left(\frac{n}{\log n}\right) \]

better than $O(n)$ of seq search.

\[(n \not\in O\left(\frac{n}{\log n}\right)) \]

eg. $i = \sqrt{n}$

$W(n) = n/\sqrt{n} + \sqrt{n} - 1$

$= 2\sqrt{n} - 1 = O(\sqrt{n})$

better than $O\left(\frac{n}{\log n}\right)$.

3
eg. \(i = \frac{n}{\log n} \)

\[
W(n) = \frac{n}{\log n} + \frac{n}{\log n} - 1
\]

\[
= \log n + \frac{n}{\log n} - 1 = O\left(\frac{n}{\log n}\right)
\]

Let us minimize for \(i \),

\[
W(n) = n/i + i - 1
\]

\[
\frac{d}{di} (W(n)) = -\frac{n}{i^2} + 1
\]

set to 0 and solve, gives \(i = \sqrt{n} \).

Hence \(W(n) = O(\sqrt{n}) \) is the best possible with the approach.
2.1.2 Recursively apply partitioning in a smaller list

Let us partition into k intervals of size n/k each

$$W(n) = n/i + i - 1$$ \hspace{1cm} (1)

$$W(n) = \frac{n}{n/k} + n/k - 1$$ \hspace{1cm} (2)

$$= k + \frac{n}{k} - 1$$ \hspace{1cm} (3)

$$= O(n/k)$$ \hspace{1cm} (4)

If we apply partitioning recursively in the sublist, we get

$$W(n) = k + W(n/k)$$

for k partitions and each partition of size n/k.

Since, in order to identify a partition, we need not compare x with $L[1]$,
\[W(n) = k - 1 + W(n/k) \]

Say \(k = 4 \), then

\[
W(n) = 3 + W(n/4)
\]

\[
= 3 + \left(3 + W\left(\frac{n}{4} \right) \right)
\]

\[
= 3 + 3 + W\left(\frac{n}{4^2} \right)
\]

\[
= 3 + 3 + \left(3 + W\left(\frac{n}{4^3} \right) \right)
\]

\[
= 3 + 3 + \left(3 + W\left(\frac{n}{4^3} \right) \right)
\]

\[
= 3 \times 3 + W\left(\frac{n}{4^3} \right)
\]

\[
= 4 \times 3 + W\left(\frac{n}{4^4} \right)
\]

\[
\ldots
\]

\[
= i \times 3 + W\left(\frac{n}{4^i} \right)
\]

How large can \(i \) be?

Eventually, partition size will become equal to 1, when

\[
y = 4^i \text{ or } \log_4 n = i
\]
Then \(W(1) = 1 \)

Thus,

\[
W(n) = 3 \log_4 n + W(1)
\]

\[
W(n) = 3 \log_4 n + 1
\]

\[
= O(\log_4 n)
\]

- much better than \(\sqrt{n} \).

In general, for any fixed \(k \),

\[
w(n) = (k - 1) \log_k n + 1
\]
2.2 RECURSIVE JUMP SEARCH: With Best Value for k

Minimize $W(n)$ w.r.t k.

Find $\frac{dw}{dk}$ & solve by setting to 0.

$$w(n) = (k - 1) \log_k n + 1$$

$$= (k - 1) \frac{\log_e n}{\log_e k} + 1$$

$$\frac{dw(n)}{dk} = (k - 1) \log_e n(-1)\left(\frac{1}{\log_e k}\right)^{-2} \frac{1}{k} + \frac{\log_e n}{\log_e k}$$

$$= -\frac{k - 1}{k} \frac{\log_e n}{(\log_e k)^2} + \frac{\log_e n}{\log_e k}$$

Set $\frac{dw}{dk} = 0$ and solve to get

$$\frac{k - 1}{k} = \log_e k$$

$$\Rightarrow \log_e k = 1 - \frac{1}{k} < 1$$

$$\Rightarrow k < e^1 = e = 2.7$$

$$\Rightarrow k = 2 \text{ (can not be 1)}$$
Further check that $\frac{d^2w}{dk^2}$ at $k = 2$ is ≥ 0 for a minimum value.

Thus, $k = 2$ is the best. So, dividing in 3 partition is not better than that in 2.

$$w(n) = k - 1 + w(n/k)$$

$$= 2 - 1 + w(n/2)$$

$$= \log_2 n + 1$$

$$w(n) = \lfloor \log_2 n \rfloor + 1$$

Binary Search: For binary search, we assumed that n is a power of 2.

If not, $w(n) = \lfloor \log_2 n \rfloor + 1$

$$A(n) = \log_2 n + 1/2$$

for binary search.
3 Optimality of Binary Search

Computation Model: Only operation allowed is comparison: Comparison Model

To Show: Binary Search is optimal in the class of search algorithms on an ordered list that can perform no other operation on the entries except comparison.
3.1 Decision Trees

- Sequential Search

\[n = 16 \]
\[w(n) = n \]

- Jump Search

\[n = 16 \text{ sublist size } = \sqrt{16} = 4 \]
\[w(16) = 7 = 2n - 1 = 2 \cdot 4 - 1 = 7 \]

- Binary Search

Middle = \(\lfloor \frac{first + last}{2} \rfloor \)
\[w(16) = 5 = 4 + 1 = \lfloor \log_2 16 \rfloor \]
Proof: (Binary search is optimal)

- Numbers of nodes in any decision tree is $\geq n$

- Minimum numbers of levels in any binary tree with n nodes is $\geq \lceil \log_2 n \rceil + 1$

 (H.W.)

- $\Rightarrow 1 + \lfloor \log_2 n \rfloor$ is a lower bound on problem complexity

- \Rightarrow Binary Search is optimal