2 SORTING BY RANKING

{rank of an item=number of items smaller}

rank each item by counting;
then place each item according to its rank.
If duplicate, then place it at the nearest slot to the right.

\[W(n) = O(n(n - 1)) = A(n) = B(n) \]

\[S(n) = O(n) \]

To handle duplicates, redefine
\[\text{rank}(i) = \text{number of items smaller than } i \text{ or, if equal, occurring before } i. \]

Oblivious Algorithm
3 SORTING BY SWAPPING

Bubble Sort—good when input is nearly sorted

\[W(n) = O(n^2/2) \]

\[S(n) = O(1) \]

Odd-Even Exchange Sort

a) odd-even compare & exchange

b) even-odd compare & exchange

c) repeat step (a) and (b) if exchange-count > 0

\[W(n) = O(n^2) \]

\[S(n) = O(1) \]
4 SORTING BY INSERTION

Online algorithms.

Linear Insertion Sort

Insert the next element in the ordered list prepared so far by sequential search & shifting.

\[
W(n) = O(n^2/2) \\
S(n) = O(1) \\
O(n) \text{ time on a sorted list}
\]
Binary Insertion sort

perform binary search to find location for insertion.

\[W(n) = O(n \log n) + O(n^2). \]

Tree Sort

Insert into a binary search tree, then traverse tree in-order.

\[W(n) = O(n^2) \]

\[S(n) = O(n) \]

\[A(n) = B(n) = O(n \log n) + O(n) \]
5 SORTING BY SELECTION

Offline algorithms

Selection sort

find maximum & replace with the concurrent last

\(W(n) = O(n^2) \)
\(S(n) = O(1) \)
\(O(n^2) \) even on a sorted list
Tournament Sort

\[W(n) = A(n) = B(n) = O(n \log n) \]

\[S(n) = O(n) \] for the tournament tree

Heap Sort

- construct a max heap - \(O(n) \)
- delete root and update heap repeatedly - \(O(n \log n) \)

\[W(n) = A(n) = O(n \log n) \]

\[S(n) = O(1) \]
5.1 Heap Sort

- Restore-Heap(i): $O(h)$ where h is the height of the node i.

- Construct Heap:

 For $i = \left\lfloor \frac{n}{2} \right\rfloor$ down to 1 Restore-Heap(i)

 $O(n)$
• Heap Sort:

1. Construct Heap \(- O(n)\)

2. For \(i := n\) down to 2 \(- O(n \log n)\)

 exchange \(L[1]\) with \(L[i]\)

 decrement heap size

 Restore-Heap(1)

• Time Complexity of deletion phase in Heap Sort

\[
W(n) = 2 \log n + W(n - 1)
\]

\[
= 2 \sum_{i=1}^{n} \log i
\]

\[
\leq 2 \int_{1}^{n+1} \log x \, dx
\]
\[= [2(x \log x - x)]_{n+1}^{n+1} \]

\[= 2n \log n - 2n \]
5.1.1 Heapsort Construction

Construct Heap:

for $i = \lfloor n/2 \rfloor$ downto 1

 Restore-heap(i)

Time Complexity of Iterative Algorithm for Heap Construction:

$$\sum_{h=1}^{\lfloor \log n \rfloor} \lceil n/2^{h+1} \rceil O(h)$$
= O \left(n \sum_{h=1}^{\log n} \left(\frac{h}{2^h} \right) \right) \\

= O(n) \text{ (pp. 135)}

Consider \(\sum_{h=1}^{\log n} h/2^h \)

Let

\[x = \frac{1}{2} + \frac{2}{2^2} + \frac{3}{2^3} + \frac{4}{2^4} + \cdots + \frac{y}{2^y} \]
(1)

\[2x = 1 + \frac{2}{2^1} + \frac{3}{2^2} + \frac{4}{2^3} + \cdots + \frac{y}{2^{y-1}} \]
(2)

\[x = 1 + \frac{1}{2} + \frac{1}{2^2} + \cdots + \frac{1}{2^{y-1}} \]
(3)

\[-\frac{y}{2^y} \]
(4)

\[
= \frac{\left(\frac{1}{2}\right)^y - 1}{1/2 - 1} - \frac{y}{2^y}
\]
(5)

\[= 2(1 - (1/2)^y) - y/2^y \]
(6)

\[\leq 2 \quad (7) \]

(8)
5.1.2 Heapsort: Recursive Construction

Construct-Heap(n):

construct left subheap
construct right subheap
Restore-heap(1)

Time Complexity:

\[
W(n) = 2w(n/2) + \log n
\]

\[
= \log n + 2w(n/2)
\]

\[
= \log n + 2 \left(\log(n/2) + 2w \left(\frac{n/2}{2} \right) \right)
\]

\[
= \log n + 2 \log n - 2 \log 2 +
2^2 w(n/2^2)
\]

\[
= \log n + 2 \log n - 2 \log 2 +
2^2 \left(\log \left(\frac{n}{2^2} \right) + 2w \left(\frac{n/2^2}{2} \right) \right)
\]

\[
= \log n + 2 \log n - 2 \log 2 +
2^3 \log n - 2^2 \log(2^2) + 2^3 w(n/2^3)
\]

\[
= \log n + 2 \log n - 2 \log 2 +
\]

\[
\cdots
\]

\[
= \log n + 2 \log n - 2 \log 2 +
\]

\[
+ 2^2 \log n - 2^2 \log(2^2) + \cdots +
\]

\[
2^k \log n - 2^k \log(2^k) + 2^{k+1} w(n/2^{k+1})
\]

\[
= \log n(1 + 2 + 2^2 + \cdots + 2^k)
\]

\[
- (2 + 2 \cdot 2^2 + 3 \cdot 2^3 + \cdots + k \cdot 2^k)
\]
Here, we assume that \(n = 2^k \) so \(k = \log n \).

Let \(s = 2^0 + 2^1 + 2^2 + \cdots + 2^k \)
\[= \frac{2^{k+1} - 1}{2 - 1} = 2^{k+1} - 1 \]

To derive this formula, one can follow these steps:

\[
\begin{align*}
 s &= 2^0 + 2^1 + 2^2 + \cdots + 2^k \\
 2s &= 2^1 + 2^2 + \cdots + 2^k + 2^{k+1} \\
 s &= -1 + 2^{k+1}
\end{align*}
\]

Thus, \(\sum_{i=0}^{k} 2^i = 2^{k+1} - 1 \)

Likewise, let
\[
\begin{align*}
 T &= 1 \cdot 2^1 + 2 \cdot 2^2 + 3 \cdot 2^3 + \cdots + k \cdot 2^k \\
 2T &= 1 \cdot 2^2 + 2 \cdot 2^3 + \cdots + (k-1) \cdot 2^k + k \cdot 2^{k+1} \\
 T &= -2^1 - 2^2 - 2^3 - \cdots - 2^k + k \cdot 2^{k+1} \\
 &= k \cdot 2^{k+1} - (2^1 + 2^2 + \cdots + 2^k) \\
 &= k \cdot 2^{k+1} - (2^{k+1} - 2) \\
 &= (k-1)2^{k+1} + 2
\end{align*}
\]

\[\Rightarrow W(n) = \log n(2^{k+1} - 1) - ((k-1)2^{k+1} + 2) \]
\[= 2n \log n - \log n - 2n \log n + 2n - 2 \]
\[= 2n - \log n - 2 \]
\[= O(n) \]
5.1.3 Priority Queue employing Heap

Read pp. 138 (Section 6.5)

Delete Max/Min

Insert

See Exercise 6-1, pp. 142
6 SORTING BY MERGING

- Mergesort

\[W(n) = O(n) + 2w(n/2) \]
\[= n + 2w(n/2) \]
\[= n + 2(n/2 + 2w(n/2^2)) \]
\[= n + n + 2^2w(n/2^2) \]
\[= 2n + 2^2w(n/2^2) \]
\[= 2n + 2^2(n/2^2 + 2w(n/2^3)) \]
\[= 3n + 2^3w(n/2^3) \]
\[\cdots \]
\[= kn + 2^k w(n/2^k) \]
\[w(n/2^k) = w(1) = 0 \]
\[n/2^k = 1, \ k = \log_2 n \]
\[\Rightarrow W(n) = \theta(n \log n) \]

- Recursion tree for \(W(n) \)

- \(S(n) = O(n) \)

 Can be reduced to \(O(1) \) but algorithm slows down.

 A temporary array of half the size is required, however.
7 SORTING BY SPLITTING

\[W(n) = O(n^2) \text{ but } A(n) = O(n \log n) \]

Quicksort \((A, p, r)\):

\[
\text{if } p < r \text{ then } q \leftarrow \text{Partition}(A, p, r)
\]

\[
\text{Quicksort}(A, p, q)
\]

\[
\text{Quicksort}(A, q + 1, r)
\]
7.1 Quicksort: Partitioning

Partition I.

\(x := A[p]; \ i := p - 1; \ j := r + 1 \)

\[\text{while (TRUE) do} \]

\[\text{ Repeat Decrement } j \text{ until } A[j] \leq x \]

\[\text{ Repeat Increment } i \text{ until } A[i] \geq x \]

\[\text{ if } i < j \]

\[\text{ then exchange } A[i] \text{ and } A[j] \]

\[\text{ else return } j \]

\[\text{ endwhile} \]
$$x = 15$$

15 7 23 5 20 3

Why do i and j never get out of array bounds?

$$W(n) = n + 2$$ comparisons
\[W(n) = O(n^2) = O(n) + W(n - 1) \]

\[B(n) = O(n) + 2B(n/2) = O(n \log n) \]
Balance Partitioning:

- Even if each split is 1% on one side and 99% on the other, recursion tree remains logarithmic.

- Alternate good and bad splits:
Quicksort Improvements

- random x
- median of first, middle and last items
- insertion sort for $n \leq 15$

$S(n) = O(n)$
(See 7-4; reduces $S(n)$ to $O(\log n)$)
7.2 Quicksort: Partitioning II

Input: A[p..r]

Invariants: \{All items in A[2..i] are < the pivot.\}

\{All items in A[(i + 1)..(unknown − 1)] are ≥ the pivot\}

\(x = A[p]; \ i := p;\)

for unknown := p + 1 to r do

if \(A[unknown] < x\) then

\(i := i + 1; \ \text{swap}(A[i], A[unknown])\)

\(\text{swap}(A[1], A[i])\)

\(W(n) = n − 1\) comparisons
7.3 Av. Case Complexity of Quicksort

Assume

- all keys distinct
- all permutations equally likely

Probability that split point is \(i \), for \(1 \leq i \leq n \), is \(1/n \)

\[
A(n) = (n - 1) + \frac{1}{n}(A(0) + A(n - 1) + A(1) + A(n - 2) + \cdots A(n - 1) + A(0))
\]

\[
= n - 1 + \frac{2}{n}(A(0) + A(1) + \cdots + A(n - 1))
\]

\[
A(n) = n - 1 + \frac{2}{n} \sum_{i=2}^{n-1} A(i), \quad A(0) = A(1) = 0
\]

\[
(n)A(n) = (n)(n - 1) + 2 \sum_{i=2}^{n-1} A(i)
\]

\[
A(n - 1) = n - 2 + \frac{2}{n - 1} \sum_{i=2}^{n-2} A(i)
\]

\[
(n - 1)A(n - 1) = (n - 1)(n - 2) + 2 \sum_{i=2}^{n-2} A(i)
\]

\[
nA(n) - (n - 1)A(n - 1)
\]

\[
= n(n - 1) - (n - 2)(n - 1) + 2A(n - 1)
\]
\[nA(n) - (n + 1)A(n - 1) = 2(n - 1) \]

\[\frac{A(n)}{n + 1} - \frac{A(n - 1)}{n} = \frac{2(n - 1)}{n(n + 1)} \]

Let \(B(n) = \frac{A(n)}{n + 1} \) (Changing Variable)

Since \(A(1) = 0, B(1) = 0 \)

\[\Rightarrow B(n) - B(n - 1) = \frac{2(n - 1)}{n(n + 1)} \]

\[B(n) = \frac{2(n - 1)}{n(n + 1)} + B(n - 1) \]

\[= \frac{2(n - 1)}{n(n + 1)} + \left(\frac{2(n - 2)}{(n - 1)(n)} + B(n - 2) \right) \]

\[= B(1) + \frac{2 \cdot 1}{2 \cdot 3} + \frac{2 \cdot 2}{3 \cdot 4} + \cdots + \frac{2(n - 1)}{n(n + 1)}, B(1) = 0 \]

\[B(n) = \sum_{i=2}^{n} \frac{2(i - 1)}{i(i + 1)} \]

\[f(n) = \frac{2(n-1)}{n(n+1)} \] continuous decreasing function

\[B(n) \leq \int_{2}^{n} f(x) dx, \quad f(1) = 0 \]

\[\frac{2(x - 1)}{x(x + 1)} = \frac{A}{x} + \frac{B}{x + 1} \]

\[= \frac{(A + B)x + A}{x(x + 1)} \]

\[\Rightarrow A = -2 \]

\[A + B = 2 \]

\[\Rightarrow B = 4 \]
\[f(x) = \frac{4}{x+1} - \frac{2}{x} \]

\[\int_{2}^{n} f(x) \, dx = \int_{2}^{n} \left(\frac{4}{x+1} - \frac{2}{x} \right) \, dx \]

\[= (4 \ln(x+1) - 2 \ln x) \bigg|_{2}^{n} \]

\[= 4 \ln(n+1) - 2 \ln n - 4 \ln 3 + 2 \ln 2 \]

\[\approx 2 \ln n \]

\[\Rightarrow B(n) \leq 2 \log n \]

\[A(n) = (n+1)B(n) \leq 2(n+1) \ln n \]

\[\Rightarrow A(n) \leq 1.4(n+1) \log_2 n \]
8 LOWER BOUND

(a) Local exchange only

each accomplishes in undoing one inversion
5 1 4 7 2 has inversions (5,1),(5,4),(5,2),(4,2),(7,2)
(n n-1 ... 2 1) has \(n(n-1)/2\) inversions
\(\Rightarrow O(n^2/2)\) lower bound

(b) lower bound on comparison based sorting
example: a b c - there are 3! outputs.
(for n numbers there are n! outputs)
Every decision tree to sort n numbers must have atleast n! leaf nodes
Every decision tree to sort n numbers must have atleast 2n! - 1 nodes
Every decision tree to sort n numbers must have depth atleast \(\log_2 n!\) leaf nodes
Depth is the lower bound worst case time complexity for this class of algorithms
\(\log_2 n! = \log_2(n \times (n-1) \times (n-2) \times (n-3)......1)\)
\(\log_2 n! = \log_2(n) + \log_2(n-1) + \log_2(n-2) + \log_2(n-3)...... + \log_2(1)\)
\(\log_2 n! = \sum_{j=1}^{n} \log_2 j\)
\(\leq f_1^n \log_2 x dx\)
\(= (x \log x - x)|_1^n\)
\(= n \log n - n\)

Lower Bound on Comparison-Based Sorting Algorithm
Decision Tree for 3 numbers
Depth of binary tree with $n!$ leaves
$\geq \log_2 n!$
$\geq \int \log x dx$
$\geq n \log n - 1.5n$
9 SHELL SORT (Donald Shell)

Sort subarray comprising every h_i location, for a few selected hop sizes h_i, $k \geq i \geq 1$, and final $h_1 = 1$

$h_1 = 1$ always use insertion sort for sorting

with $h_2 = 1.72n^{1/3}$

\[
W(n) = \left(\frac{n}{1.72n^{1/3}}\right)^2 + 1.72n^{1/3} + n^2
\]
\[
= \frac{n^2}{1.72n^{1/3}} + n^2
\]
\[
= \frac{n^{5/3}}{1.72} + n^2
\]
\[
= O(n^2)
\]

for $h_k = 2^k - 1$, $1 \leq k \leq \lfloor \log n \rfloor$

$W(n) = O(n)$

$2^5 - 1 = 31 = (11111)_2$

$2^4 - 1 = 15 = (1111)_2$

for h_k is an integer of the form 2^i3^j, $h_k < n$

$W(n) = O(n(\log n)^2)$

$2^03^0, 2^13^0, 2^03^1, 2^13^1, 2^23^1$

1 2 3 6 12

too many h'_ks, hence overhead is large.