Distributed Energy-Efficient Scheduling Approach for k-Coverage in Wireless Sensor Networks

C. T. Vu, S. Gao, W.P. Deshmukh, and Y. Li

Georgia State University
Presentation outline

- Energy-Efficient Scheduling
- k-coverage problem
- Sensor Energy-Efficient Scheduling for k-coverage - SESK problem
- Distributed Energy-Efficient Scheduling for k-coverage – DESK algorithm.
- Simulation result
Energy-Efficient Scheduling

- **Objective:** Maximum network lifetime and balance energy consumption among sensors

- **Example:** Lifetime of each sensor is 2

Initial network

Schedule 1: $C_1 = \{(S_1, S_3), 2\}$
Lifetime = 2. Waste energy: E_{S_2}
Energy-Efficient Scheduling (cont.)

Schedule 2: Lifetime = 3.
Waste energy = 0

\[C_1 = \{(S_1, S_2), 1\} \]
\[C_2 = \{(S_1, S_3), 1\} \]
\[C_3 = \{(S_2, S_3), 1\} \]
k-coverage problem

- *k*-coverage for an area
- *pcl* – Perimeter coverage level
- *k*-perimeter-coverage for a sensor

Outside the area: *

\[pcl = \text{INF} \]

\[k = 2 \]
Sensor Energy-Efficient Scheduling for k-coverage - SESK

- **Given:**
 - Monitored area A.
 - Set of sensors $S = \{s_1, s_2, .., s_N\}$.

- **Find:**
 - A schedule $(C_1, t_1), \ldots, (C_m, t_m)$
 - C_j: non-disjoint set cover, t_j: active time

- **Objective:**
 - Maximize $\sum t_j$.
 - k-cover whole area A.
 - Energy consumption is balanced.

- **is NP-complete**
 - SESK is general problem of SET K-COVER problem.
Distributed Energy-Efficient Scheduling for k-coverage - DESK

• Rule proposed by Huang & Tseng:
 – The whole area is k-covered iff each sensor is k-perimeter-covered.
Distributed Energy-Efficient Scheduling for k-coverage - DESK (cont.)

- DESK is completely distributed & localized.
- DESK works in rounds

![Network time line diagram]

- **Round 1**
- **Round 2**
- **...**
- **Round R**

- **Decision phase**
- **Sensing phase**

All sensors simultaneously run DESK in this phase
DESK (cont.)

- Useless/Useful neighbor
- A *counter* — number of neighbors to whom s is useful.
- Each sensor s maintain a waiting timer w whose value depends on:
 - Residual energy, sensing range.
 - Current *counter* value.

![Diagram](k=1)
DESK run at a sensor s

- Receive message from neighbor v
- $t \geq w$
- end of decision phase?

- mACTIVATE
 - Update pcl
 - Send mASK2SLEEP to any useless neighbors.

- mASK2SLEEP
 - counter --
 - Update w.

- mGOSLEEP
 - Remove v out of neighbors' list

- counter = 0
 - YES
 - Send mGOSLEEP
 - Go to SLEEP
 - NO
 - Set to be ACTIVE
 - Send mACTIVATE

- STOP
Example: for $k=1$

- S_1 send mACTIVATE to $S_2, 3, 4, 5$
- S_2 send mASK2SLEEP to S_3
- S_3, $\text{counter} = 3$ and update w

- S_2 send mACTIVATE to $S_1, 3, 4, 5$
- $S_1, 4, 5$ send mASK2SLEEP to S_3
- S_3, $\text{counter} = 0$, update w

This part is outside

All are covered by S_2
Simulation setting

• Monitored area: $800^\text{m} \times 800^\text{m}$.
• Sensing range: $400^\text{m} \rightarrow 500^\text{m}$.
• Decision phase: 2 seconds
• Round length: 20 minutes
Simulation:
Network lifetime with different number of sensors

![Graph showing network lifetime with different number of sensor nodes. The x-axis represents the number of sensor nodes, ranging from 50 to 200. The y-axis represents network lifetime in hours, ranging from 2000 to 3000. The graph includes lines for different values of k: k=1 (black squares), k=2 (blue circles), k=4 (red stars), and k=8 (pink triangles).}]
Simulation: Network lifetime with different power ratio
QUESTION?