Topology Control for Time-Evolving and Predictable Delay-Tolerant Networks

Minsu Huang, Siyuan Chen, Ying Zhu, Bin Xu, and Yu Wang
IEEE MASS 2011 Best Paper Award
Outline

• Introduction
• Model and the Problem
• Topology Control for Directed DTN
• Topology Control for Undirected DTN
• Simulations
Introduction

• Predictable DTNs
 – Clear socio-temporal patterns, e.g. public buses [13], satellites [19], or mobile social networks consisting of students, 93% potential predictability [20]

• Problem
 – How to smartly control the dynamic topology for such time-evolving and predictable DTNs

• Contributions
Fig. 1. **A time-evolving DTN:** (a) a snapshot of the network, (b) time-evolving topologies of the DTN (a sequence of snapshots).
Model & The Problem

- **Space-Time Graph**

![Graphs](https://via.placeholder.com/150)

Fig. 2. **Different graph models for the time-evolving network shown in Figure 1:** (a) a sequence of snapshots of the network at each time slot, denoted by \(\{G^t\} \); (b) and (c) its corresponding aggregated graph model.
Fig. 3. Space-time graph model from the same time-evolving network in Figure 2: (a) the corresponding space-time graph G; (b) a space-time path (in blue) from the source v_2 to the destination v_5.
• New Topology Control Problem

Fig. 4. Topology control on time-evolving network (the one shown in Figure 1): (a) a new connected subgraph \mathcal{H} of \mathcal{G} (green links are removed links from Figure 3(a)); (b) its corresponding sequence of static graph with less links than the one of Figure 2(a).
• NP-hardness Proof (Directed Steiner Tree, DST Problem)

Fig. 5. Reduction from (a) the directed Steiner tree problem to (b) our TC problem on space-time graphs. Here the blue structures are the corresponding solutions in DST and TC.
Topology Control for Directed DTNs

• Shortest Path Tree method (SPT)
 – Time complexity:

\[O(Tn^3 + Tn^2 \log(Tn)) \]
• Greedy Algorithm based on Least Cost Path (GrdLCP)
 – Time complexity: $O(Tn^5 + Tn^4 \log(Tn))$
• Greedy Algorithm based on Least Density Bunch (GrdLDB)
 – Inspired by the Directed Generalized Steiner Network (DGSN)
 – Time complexity: \(O(T^2n^6 \log n) \)
 – Approximation ratio: \(O(n^{4/3} \log^{1/3} n) \)
Topology Control for Undirected DTNs

- Converting method one – Double Cost
- Converting method two – New Graph
Simulations

Fig. 10. Topologies generated over the same random network: green links are removed links from the original graph \mathcal{G}, while black links are the ones kept by each algorithm. (a-c): $p = 0.1$, (d-f): $p = 0.8$.
Fig. 12. Simulation results on networks from Cambridge Haggle [34] tracing data. Results are averages over 13 small networks.
Thanks!