Scaling Laws for Cognitive Radio Network with Heterogeneous Mobile Secondary Users

Y.Li, X.Wang, X.Tian and X.Liu

Shanghai Jiaotong University
Outline

- Introduction
- System Model
- Routing and Scheduling Scheme
- Capacity and Delay Scaling Performance
- Conclusion
Outline

- Introduction
- System Model
- Routing and Scheduling Scheme
- Capacity and Delay Scaling Performance
- Conclusion
Introduction-CRN

Cognitive Radio Network (CRN)

- The conflict between spectrum scarcity and the underutilization of licensed spectrum propels the study of Cognitive Radio technology.
- Cognitive Radio Network consists of the primary users licensed to the spectrum, and the secondary users which access the spectrum opportunistically.
 - The secondary network coexists with the licensed primary network.
 - The secondary users access the spectrum opportunistically without causing harmful interference to the primary users.
The secondary network coexist with the licensed primary network

- The number of primary users and secondary users
 - \(n \) primary users and \(m \) secondary users, and \(m = \Theta(n^\beta) \)
 - Whether \(\beta > 1, \beta = 1, \beta < 1 \) ?
- How “cognitive” are the secondary users?
 - How much information the secondary users know about the primary users?
 - Are the secondary users willing to relay the packets for the primary users?
- Static or mobile?
- ad-hoc or hybrid network?
Introduction-CRN

- The secondary users could access the spectrum opportunistically
 - How to limit the interference of secondary users to primary users?
 - The existence of secondary network should not degrade the performance of primary network
 - How to guarantee the transmission opportunity for the secondary users?
 - The secondary network should not suffer severe outage probability (i.e., the fraction of secondary users that cannot be served)
Introduction - Previous Works

- [S. Jeon, 2009]
 - Basic assumptions:
 - Dense network with \(n \) static primary users and \(m \) static secondary users with
 \[
 m = \Theta(n^\beta), \quad \text{and} \quad \beta > 1
 \]
 - The secondary nodes know the location of all the primary nodes
 - Define the preservation region around each primary user to limit the interference from secondary users
 - Results:
 - Primary network: \(\lambda_p(n) = \Theta\left(\frac{1}{\sqrt{n \log n}}\right) \)
 - Secondary network: \(\lambda_s = \Theta\left(\frac{1}{\sqrt{m \log m}}\right) \)

- [C. Yin, 2010]:
 - Basic assumptions:
 - The secondary users only know the location of primary transmitters
 - Define the preservation region around each active primary transmitters.
 - Results:
 - Primary network: \(\lambda_p(n) = \Theta\left(\frac{1}{\sqrt{n \log n}}\right) \quad \text{and} \quad D_p(n) = \Theta(n \lambda_p(n)) \)
 - Secondary network: \(\lambda_s(m) = \Theta\left(\frac{1}{\sqrt{m \log m}}\right) \quad \text{and} \quad D_s(m) = \Theta(m \lambda_s(m)) \)

Introduction-Previous Works

- The cooperation between PU and SU could improve the capacity and delay scaling in the CRN.
 - [L. Gao, 2009]:
 - **Basic Assumptions:**
 - The secondary users are willing to relay the primary packets.
 - There are n static primary users and m secondary users, either static or mobile, with $m = \Theta(n^\beta), \beta > 2$
 - **Results1:** SUs are static
 - Primary network: $\lambda_p(n) = \Theta(\frac{1}{\log n})$, and $D_p(n) = \Theta(\sqrt{n^\beta \log n \lambda_p(n)})$
 - Secondary network: $\lambda_s(m) = \Theta(\frac{1}{\sqrt{m \log m}}), D_s(m) = \Theta(m \lambda_s(m))$
 - **Results2:** SUs are mobile (i.i.d. mobility model)
 - Primary network: $\lambda_p(n) = \Theta(\frac{1}{\log n}), D_p(n) = \Theta(1)$
 - Secondary network: $\lambda_s(m) = \Theta(1), D_s(m) = \Theta(m)$

[X. Wang, 2011]:

- **Basic Assumptions:**
 - There are n static primary users and m mobile secondary users, with $m = \Theta(n^\beta)$, $\beta > 1$.
 - Cooperation is considered in this work.
 - Secondary users move under the hierarchical i.i.d. mobility model.

- **Results:**
 - Primary network:
 - Secondary network:

![Diagram of cognitive radio network with 1st-layer SU, 2nd-layer SU, and number of secondary users n]
Motivated by the fact that:

- Cooperation and Mobility could significantly improve the scaling laws in Cognitive Radio Network.
- Different mobile secondary nodes could have different moving areas in Cognitive Radio Network (Mobility Heterogeneity).
- All the previous works have some limitations in terms of system models and scaling laws.

We study:

- A more general and representative mobility model which reflects the mobility heterogeneity.
- The routing and scheduling scheme which utilize the mobility heterogeneity of secondary users.
- The impact of mobility heterogeneity on the scaling laws of Cognitive Radio Network.
Outline

- Introduction
- System Model
- Hierarchical Relay Algorithm
- Performance Of The Hierarchical Relay Algorithm
- Conclusion
Network Model:

- The primary network consists of \(n \) static, randomly and evenly distributed primary users in the unit area, which are grouped into S-D pairs one-by-one.

- The secondary network consists of \(m = (h + 1)n^{1+\varepsilon} \) heterogeneous mobile secondary users, where \(h = O(\log n), \varepsilon > 0 \) which are also grouped into S-D pairs one-by-one.

- The unit square is divided into non-overlapping small square cells, with side length \(r = \sqrt{\frac{2\log N}{N}}, N = n^{1+\varepsilon} \). Nodes can communicate with each other only when they are in the same cell.
System model – II/III

Channel Model:

- Path Loss Only:
 - Normalized channel gain is \(g(d) = d^{-r} \), where \(r > 2 \).
- We apply the Gaussian Channel Model to regulate the transmission rate, which is a continuous function to the SINR.
 - The data rate from primary transmitter \(P_i \) to primary receiver \(P_{D(i)} \):
 \[
 R(P_i, P_{D(i)}) = \log\left(1 + \frac{P_p g(\| P_i - P_{D(i)} \|)}{N_0 + I_p + I_{sp}}\right)
 \]
 - \(N_0 \): the ambient noise power
 - \(I_p \): the interference from all the other primary transmitters
 - \(I_{sp} \): the interference from all the secondary transmitters
Mobility Model for Secondary Users:

- The secondary users are uniformly and randomly distributed at the beginning.
- Each secondary user would move within a circular region centered at its initial position, according to the i.i.d. mobility model.
- The moving area of each mobile SU is $n^{-\alpha}$, where α follows the discrete uniform distribution:

 $\alpha = 0, \frac{\alpha_0}{h}, \frac{2\alpha_0}{h}, ..., \alpha_0$ with equal probability $p = \frac{1}{h + 1}$

- $h = O(\log n)$ and α_0 is a random positive value. (h and α_0 determine the mobility heterogeneity together)

- We call the SUs with $\alpha = \frac{i\alpha_0}{h}$ the i-th type secondary user.
Mobility Model:

- Denote the k-th secondary user of type i as \(S_{i,k} \), and its initial position as \(X_{i,k} \), where \(0 \leq i \leq h \), \(1 \leq k \leq N = n^{1+\varepsilon} \).
- Under the proposed mobility model: \(\| S_{i,k} - X_{i,k} \| \leq R_i \), where
 \[
 R_i = \Theta(n^{-i\alpha_0/2h})
 \]
Outline

- Introduction
- System Model
- Routing and Scheduling Scheme
- Capacity and Delay Scaling Performance
- Conclusion
Primary Network Routing Scheme

- The secondary users are willing to act as the relay nodes for primary users.

- The primary routing scheme would utilize the mobility heterogeneity of SUs to make the packet approach its destination progressively.

- Since the SUs with larger type would correspond to smaller moving area, thus we define the maximum type of SU that can be exploited to relay the primary packets.

 ➢ Definition 1: (Critical Relay Type) The critical relay type h^* is defined as: $h^* = \max\{ i \mid R_i \geq 2\sqrt{2r} \}$, where $i = 0,1,2,...h$
The primary relay algorithm would utilize the SU relay nodes from type 0 to type h^*:

- In the first step, the primary source node would relay the packet to a 0-type SU.
- In the intermediate relay steps, the $(i-1)$-th type SU $S_{i-1,u_{i-1}}$ which holds the packet would relay it to a i-th type SU S_{i,u_i}, whose moving area contains the primary destination node. ($1 \leq i \leq h^*$)
- In the final step, the h^*-type SU which holds the packet would relay the packet to the primary receiver.
Primary Relay Algorithm

Algorithm 1 Relay Algorithm for Primary Packet B_p

Input: The primary source node P_i and destination node P_j

Output: The $h^* + 1$ intermediate secondary relay nodes

1. P_i relay B_p to a 0 type SU S_{0,u_0}, when S_{0,u_0} moves to the same cell as P_i.
2. for $k=0$ to $(h^* - 1)$ do
3. S_{k,u_k} moves within its moving area until it meets $S_{k+1,u_{k+1}}$ in the same cell, whose initial position satisfies $\|X_{k+1,u_{k+1}} - P_j\| < R_{k+1} - \sqrt{2}r$ and $\|X_{k,u_k} - X_{k+1,u_{k+1}}\| < R_k$.
4. S_{k,u_k} relay B_p to $S_{k+1,u_{k+1}}$.
5. end for
6. $S_{h^*,u_{h^*}}$ moves within its moving area until it arrives at the same cell as P_j.
7. $S_{h^*,u_{h^*}}$ relay B_p to P_j.
For the secondary source node S_{i,k_i} and its destination node S_{j,k_j}, the secondary relay algorithm would utilize SU relay nodes from type 0 to type $h' = \min\{j, h^*\}$:

- In the first step, the secondary source node would relay its packet to a 0-type SU.
- In the intermediate relay steps, the k-th type SU S_{k,u_k} which holds the packet would relay it to a $(k+1)$-th type SU $S_{k+1,u_{k+1}}$, whose moving area contains the initial position of destination node. ($0 \leq k \leq h'-1$)
- In the final step, the h'-the type SU $S_{h',u_{h'}}$ which holds the packet would relay it to the destination node S_{j,k_j}, when they are encountered in the same cell.
Algorithm 2: Relay Algorithm for Secondary Packet $B_{s,j}$

Input: The source node S_{i,k_i} and destination node S_{j,k_j}

Output: The $h' + 1$ intermediate secondary relay nodes

1. S_{i,k_i} moves within its moving area until it meets a 0-type SU S_{0,u_0} in the same cell.
2. S_{i,k_i} relay $B_{s,j}$ to S_{0,u_0}.
3. **for** $k=0$ to $(h' - 1)$ **do**
4. S_{k,u_k} moves within its moving area until it meets $S_{k+1,u_{k+1}}$ in the same cell, whose initial position satisfies $\|X_{k+1,u_{k+1}} - X_{j,k_j}\| < R_{k+1} - \sqrt{2}r$ and $\|X_{k+1,u_{k+1}} - X_{k,u_k}\| < R_k$.
5. S_{k,u_k} relay $B_{s,j}$ to $S_{k+1,u_{k+1}}$.
6. **end for**
7. $S_{h',u_{h'}}$ moves within its moving area until it encounters S_{j,k_j} in the same cell.
8. $S_{h',u_{h'}}$ relay $B_{s,j}$ to S_{j,k_j}.
25-TDMA scheme is adopted:

- All the cells are divided into 25 sub-slots by a 5*5 pattern.
- The cells in different subsets would be activated with a round-robin fashion within one time slot.
We define preservation region to control the interference from SUs to PUs:

- The preservation region is a square that contains 9 cells, with the active primary transmitter in the center cell.
- Only SUs outside the current preservation region could transmit or relay packets.
Scheduling Scheme

- The scheduling scheme would guarantee transmission opportunity for both primary network and secondary network.

- The scheduling scheme consists of $2h^*+3$ phases, the first h^*+1 phases would transmit the primary packets:

 For $k = 1, 2, ..., h^*$,

 Phase k: During the active period of each cell, all pairs of nodes $(S_{k-1}, u_{k-1}, S_k, u_k)$ residing in this cell are eligible for transmission in this phase, if S_{k-1}, u_{k-1} contains a primary packet B_p to relay and S_k, u_k can act as the k-th type relay SU for this B_p. One of such node pairs would be randomly selected to transmit if the eligible transmission node pairs is non-empty in this cell.

Phase (h^*+1): During the active period of each cell, all pairs of nodes (S_{h^*}, u_{h^*}, P_j) residing in this cell are eligible for transmission in this phase, if S_{h^*}, u_{h^*} contains a primary packet B_p destined to P_j. One of such node pairs would be randomly selected to transmit if the eligible transmission node pairs is non-empty in this cell.
Scheduling Scheme

- The next $h^* + 2$ phases would transmit secondary packets.

Phase $(h^* + 2)$: During the active period of each cell, randomly select a source SU $S_{i,k}$ in this cell (if there is any). Let $S_{i,k}$ relay a secondary packet $B_{s,j}$ to a random 0-type SU $S_{0,u(0)}$, if there exists any 0-type SU in this cell.

For $k = 1, 2, ..., h^*$,

Phase $(h^* + 2 + k)$: During the active period of each cell, two types of SU pairs residing in this cell are eligible for transmission in this phase: (1) node pair $(S_{k-1, u_{k-1}}, S_{k-1, j_{k-1}})$ which satisfies: $S_{k-1, u_{k-1}}$ contains a secondary packet $B_{s,k-1}$ destined to $S_{k-1, j_{k-1}}$; or (2) node pair $(S_{k-1, u_{k-1}}, S_{k, u_k})$ which satisfies: $S_{k-1, j_{k-1}}$ contains a secondary packet $B_{s,k'} (k \leq k' \leq h^*)$ to relay and S_{k, u_k} can act as the k-th type relay SU for $B_{s,k'}$. One of such node pairs would be randomly selected to transmit if the eligible transmission node pairs is non-empty in this cell.

Phase $(2h^* + 3)$: During the active period of each cell, all pairs of nodes $(S_{h^*, u_{h^*}}, S_{j,k})$ ($h^* \leq j \leq h$) residing in this cell are eligible for transmission in this phase, if $S_{h^*, u_{h^*}}$ contains a secondary packet $B_{s,j}$ destined to $S_{j,k}$. One of such node pairs would be randomly selected to transmit if the eligible transmission node pairs is non-empty in this cell.
Outline

- Introduction
- System Model
- Routing and Scheduling Scheme
- Capacity and Delay Scaling Performance
- Conclusion
Lemma 5&6: In any cell, there are at most $\Theta(1)$ PUs and $\Theta(\log n)$ SUs of each type with high probability.

Lemma 7: During the routing process of primary packets, the primary transmitters and secondary relay nodes can support constant data rate in each cell.

Theorem 1: Under the proposed relay algorithm, the primary network can achieve the following average per-node throughput with high probability: $\lambda_p = \Theta\left(\frac{1}{h}\right)$

Theorem 2: Under the proposed primary relay algorithm, the primary network can achieve the following average delay with high probability: $D_p = \Theta\left(hn^{(1+\varepsilon-h^*\frac{\alpha}{h})} + h^2n^{\frac{\alpha}{h}} \log^2 n\right)$
Lemma 9: During the routing process of secondary packets, the secondary transmitters and relay nodes can support a constant data rate in each cell.

Theorem 3: Under the proposed secondary relay algorithm, the secondary network can achieve the following per-node throughput with high probability:

\[\lambda_s = \Theta\left(\frac{1}{h^2 \log n}\right) \]

Theorem 4: Under the proposed secondary relay algorithm, the secondary network can achieve the following average delay with high probability:

\[D_{s,j} = O(h^2 \log n + h^2 n^h \log^2 n + h^2 n^{(1+\varepsilon^2)} \log n) \]

where \(j \) is the type of destination node.
Optimal Performance of Primary Network

- The effect of mobility heterogeneity (i.e., h and α_0) on the capacity and delay scaling laws of primary network:
 - If $h = \Theta(1)$, denote $\alpha_{th} = \frac{1 + \varepsilon - 2 \log \log n / \log n}{1 + 1/h}$, the primary network could achieve the following average delay:

$$D_p = \begin{cases}
\Theta(n^{\frac{\alpha_0}{h}} \log^2 n), & \text{if } \alpha_0 \geq \alpha_{th} \\
\Theta(n^{1+\varepsilon-\alpha_0}), & \text{if } \alpha_0 < \alpha_{th}
\end{cases}$$

- Despite the throughput performance is optimal, but the delay performance is still suboptimal, since $D_p = \omega(poly \log n)$
If \(h = \Theta(\log n) \), denote \(\alpha_{th'} = \frac{1 + \varepsilon - 3\log \log n / \log n}{1+1/h} \), the primary network can achieve the following average delay:

\[
D_p = \begin{cases}
\Theta(\log^4 n), & \text{if } \alpha_0 \geq \alpha_{th'} \\
\Theta(n^{1+\varepsilon-\alpha_0} \log n), & \text{if } \alpha_0 < \alpha_{th'}
\end{cases}
\]

with the per-node throughput \(\lambda_p = \Theta\left(\frac{1}{\log n}\right) \).

In this case, the delay performance can be improved when \(\alpha_0 \) increase from 0 to \(\alpha_{th'} \), until near-optimal delay performance is achieved.
Curve for the relation between Delay/Capacity tradeoff and mobility heterogeneity:
Similar to primary network, the secondary network can also achieve the optimal performance when \(h = \Theta(\log n) \) and \(\alpha_0 \geq 1 + \varepsilon \):

- The secondary network can achieve the following average delay:

\[
D_p = \begin{cases}
\Theta(\log^4 n), & \text{if } j \geq h^* \\
\Theta(n^{1+\varepsilon-j\alpha_0/h} \log^3 n), & \text{if } j < h^*
\end{cases}
\]

with per-node throughput of \(\lambda_s = \Theta\left(\frac{1}{\log^3 n}\right) \)

- The secondary network can achieve the near-optimal delay-capacity tradeoff for the when the type of destination SUs satisfies: \(j \geq h^* \)
Comparison with Previous Works

- Compared with [13], this paper achieves better delay scaling for secondary network while requires less secondary users.

- Compared with [14], this paper adopts more general mobility model and better scaling for secondary network.

TABLE II: Comparison of optimal scalings of HSRM with other mobility models for SU

<table>
<thead>
<tr>
<th>Reference</th>
<th>SU Mobility</th>
<th>PU Throughput</th>
<th>PU Delay</th>
<th>SU Throughput</th>
<th>SU Delay</th>
<th>Number of SUs</th>
</tr>
</thead>
<tbody>
<tr>
<td>S. Cui [13]</td>
<td>i.i.d.</td>
<td>$\Theta(1/\log n)$</td>
<td>$\Theta(1)$</td>
<td>$\Theta(1)$</td>
<td>$\Omega(n^2)$</td>
<td>$\Omega(n^2)$</td>
</tr>
<tr>
<td>X. Wang [14]</td>
<td>hierarchical</td>
<td>$\Theta(1/\log n)$</td>
<td>$\Theta(\log^2 n)$</td>
<td>$\Theta(1/n^\delta)$</td>
<td>$\Omega(\log^2 n)$</td>
<td>$O(n^{1+\delta'})$</td>
</tr>
<tr>
<td>This paper</td>
<td>HSRM</td>
<td>$\Theta(1/\log n)$</td>
<td>$\Theta(\log^4 n)$</td>
<td>$\Theta(1/\log^3 n)$</td>
<td>$O(\log^4 n)$</td>
<td>$O(n^{1+\delta''})$</td>
</tr>
</tbody>
</table>
Outline

- Introduction
- System Model
- Routing and Scheduling Scheme
- Capacity and Delay Scaling Performance
- Conclusion
Conclusion

- We propose a more general mobility model which reflects the mobility heterogeneity of secondary users in CRN.

- We show the increase of mobility heterogeneity could improve the delay-capacity tradeoff for both primary network and secondary network.

- Under optimal condition, the proposed algorithm can achieve near-constant capacity and delay scaling for primary network and part of secondary network.
Thank you!
Introduction-Previous Work

- [S. Jeon, 2009]-Preservation region

![Diagram of Preservation region with primary and secondary nodes.](image-url)

- Preservation region
- Primary node
- Secondary node