Exercises

1. Prove that if \(n \) is a positive integer with \(1 \leq n \leq 4 \).

2. Prove that there are no positive perfect cubes less than 1000 that are the sum of the cubes of two positive integers.

3. Prove that if \(x \) and \(y \) are real numbers, then \(\max(x, y) + \min(x, y) = x + y \) whenever \(x \) and \(y \) are real numbers.

4. Use a proof by cases to show that \(\min(a, b, c) = \min(\min(a, b), c) \) whenever \(a, b, \) and \(c \) are real numbers.

5. Prove using the notion of without loss of generality that \(\min(a, b + c) = \min(a, b) + \min(a, c) \) whenever \(a, b, \) and \(c \) are real numbers.

6. Prove using the notion of without loss of generality that \(\min(a, b + c) = \min(a, b) + \min(a, c) \) whenever \(a, b, \) and \(c \) are real numbers.

7. Prove that there exists a pair of consecutive integers such that one of these integers is a perfect square and the other is not.

8. Prove that there are 100 consecutive positive integers that are not perfect squares. Is your proof constructive or nonconstructive? [Hint: Start with the inequality \(x^2 - 1 = 2 \) which holds for all non-negative integers.

9. The harmonic mean of two real numbers \(x \) and \(y \) equals \(\frac{2xy}{x + y} \). By computing the harmonic and geometric means of different pairs of positive real numbers, formulate a conjecture about their relative sizes and prove your conjecture.

10. Prove that \(\sqrt{2} \) is an irrational number.

11. Prove or disprove that \(\sqrt{2} \) is a rational number.

12. Prove that there are 100 consecutive positive integers that are not perfect squares. Is your proof constructive or nonconstructive?

13. Work backward, assuming that you did not know which of the numbers is less than \(n \). Formulate a conjecture about the relative sizes and prove your conjecture.

14. Formulate a conjecture about the relative sizes of different pairs of positive real numbers, formulate a conjecture about their relative sizes and prove your conjecture.

15. Write the numbers 1, 2, 3, 4, 5 as a circle. Between any two equal bits you insert a0 and 00. Then you erase the nine original zeros. Show that the integer must be odd.

16. Suppose that five ones and four zeros are arranged around a circle. Between any two equal bits you insert a0 and 00. Then you erase the nine original zeros. Show that the integer must be odd.

17. Prove that the product of two of the numbers \(651000 - 92100 \), \(92100 - 37137 \), \(292939 - 62201 \), and \(249493 - 71177 \) is nonnegative. Is your proof constructive or nonconstructive? [Hint: Do not try to evaluate these numbers!]

18. Prove or disprove that there is a rational number \(x \) and an irrational number \(y \) such that \(x + y \) is irrational.

19. Prove or disprove that if \(a \) and \(b \) are rational numbers, then \(a^2 \) is also rational.

20. Show that if \(r \) is a rational number, there is a unique integer \(n \) such that the distance between \(r \) and \(n \) is less than 1/2.

21. Prove that if \(n \) is an odd integer, then there is a unique integer \(k \) such that \(n = k^2 + 1 \). Formulate a conjecture about the relative sizes and prove your conjecture.

22. Prove that there are no positive perfect cubes less than 1000 that are the sum of the cubes of two positive integers.

23. The harmonic mean of two real numbers \(x \) and \(y \) equals \(\frac{2xy}{x + y} \). By computing the harmonic and geometric means of different pairs of positive real numbers, formulate a conjecture about their relative sizes and prove your conjecture.

24. The quadratic mean of two real numbers \(x \) and \(y \) equals \(\sqrt{x^2 + y^2} \). By computing the arithmetic and quadratic means of different pairs of positive real numbers, formulate a conjecture about their relative sizes and prove your conjecture.

25. Write the numbers 1, 2, 3, 4, 5 as a circle. Between any two equal bits you insert a0 and 00. Then you erase the nine original zeros. Show that the integer must be odd.

26. Suppose that five ones and four zeros are arranged around a circle. Between any two equal bits you insert a0 and 00. Then you erase the nine original zeros. Show that the integer must be odd.

27. Formulate a conjecture about the decimal digits that appear as the final decimal digit of the fourth power of an integer. Prove your conjecture using a proof by cases.

28. Formulate a conjecture about the final two decimal digits of the square of an integer. Prove your conjecture using a proof by cases.

29. Formulate a conjecture about the final two decimal digits of the square of an integer. Prove your conjecture using a proof by cases.

30. Prove that there are no solutions in positive integers \(x \) and \(y \) to the equation \(2x^2 + 3y^2 = 14 \).

31. Prove that there are no solutions in positive integers \(x \) and \(y \) to the equation \(2x^2 + 3y^2 = 14 \).

32. Prove that there are infinitely many solutions in positive integers \(x \), \(y \), and \(z \) to the equation \(x^2 + y^2 = z^2 \).

33. Let \(a = m^2 - n^2 \), \(b = 2mn \), and \(c = m^2 + n^2 \), where \(a \) and \(b \) are integers.
33. A part of the proof in Example 4 in Section 1.7 to prove that if $a = \sqrt{2}$, where a, b, and c are positive integers, then $a \leq \sqrt{2}$, $b \leq \sqrt{2}$, or $c \leq \sqrt{2}$.

34. Prove that $\sqrt{2}$ is irrational.

35. Prove that between every two rational numbers there is an irrational number.

36. Prove that between every rational number and every irrational number there is an irrational number.

37. Let $\phi = \frac{1 + \sqrt{5}}{2}$, where x_1, x_2, \ldots, x_n are orderings of two different sequences of positive real numbers, each containing n elements.

a) Show that ϕ takes its maximum value over all orderings of the two sequences when both sequences are sorted (so that the elements in each sequence are in nondecreasing order).

b) Show that ϕ takes its minimum value over all orderings of the two sequences when one sequence is sorted into nondecreasing order and the other is sorted into nonincreasing order.

38. Prove or disprove that if you have an 8-gallon jug of water and two empty jugs with capacities of 5 gallons and 3 gallons, respectively, then you can measure 4 gallons by successively pouring some of or all of the water in a jug into another jug.

39. Verify the $3x + 1$ conjecture for these integers.

a) 6 b) 7 c) 17 d) 21

40. Verify the $3x + 1$ conjecture for these integers.

a) 16 b) 11 c) 35 d) 113

41. Prove or disprove that you can use dominoes to tile a standard checkerboard with two adjacent corners removed (that is, corners that are not opposite).

42. Prove or disprove that you can use dominoes to tile a standard checkerboard with all four corners removed.

43. Prove that you can use dominoes to tile a rectangular checkerboard with an even number of squares.

44. Prove or disprove that you can use dominoes to tile a 5×5 checkerboard with three corners removed.

45. Use a proof by exhaustion to show that a tiling using dominoes of a 4×4 checkerboard with opposite corners removed does not exist. [Hint: First show that you can assume that the squares in the upper left and lower right corners are removed. Number the squares of the original checkerboard from 1 to 16, starting in the first row, moving right in this row, then starting in the leftmost square in the second row and moving right, and so on. Remove squares 1 and 16. To begin the proof, note that square 2 is covered either by a domino laid horizontally, which covers squares 2 and 3, or vertically, which covers squares 2 and 6. Consider each of these cases separately, and work through all the subcases that arise.]

46. Prove that when a white square and a black square are removed from an 8×8 checkerboard (colored as in the text) you can tile the remaining squares of the checkerboard using dominoes. [Hint: Show that when one black and one white square are removed, each part of the partition of the remaining cells formed by inserting the barriers shown in the figure can be covered by dominos.]

47. Show that by removing two white squares and two black squares from an 8×8 checkerboard (colored as in the text) you can make it impossible to tile the remaining squares using dominos.

48. Find all squares, if they exist, on an 8×8 checkerboard such that the board obtained by removing one of these squares can be tiled using straight triominoes. [Hint: First use arguments based on coloring and rotations to eliminate as many squares as possible from consideration.]

49. a) Draw each of the five different tetrominoes, where a tetromino is a polyomino consisting of four squares.

b) For each of the five different tetrominoes, prove or disprove that you can tile a standard checkerboard using these tetrominoes.

50. Prove or disprove that you can tile a 10×10 checkerboard using straight tetrominoes.