Final Exam Study Guide 😊

1. Understand the different sorting algorithms we have seen in class and their corresponding average case and worst-case complexities: Insertion Sort, Selection sort, Bubble Sort, QuickSort, MergeSort, and HeapSort.
2. Understand the insertion and deletion operations on a Max-heap and min-heap.
3. Know the array-representation of the heap ADT.
4. Know the graph properties (connected, weighted, complete, multigraph...) and their representations using adjacency list and adjacency matrix.
5. Understand the graph traversals algorithms: BFS, DFS.
6. Be able to find the minimum-spanning-tree (MSP) using BFS-traversal, DFS-traversal and Prim’s algorithm for weighted graphs.
7. Understand recursive functions and be able to write one depending on the problem.
Final Exam: Review Problems

PART I: Problems:

Problem 1:
Draw the binary min heap that results from inserting: 77, 22, 9, 68, 16, 34, 13, 8 in that order into an initially empty binary min heap. You do not need to show the array representation of the heap. You are only required to show the final heap, although if you draw intermediate heaps.

Problem 2:
Use the following graph for this problem. Where needed and not determined by the algorithm, assume that any algorithm begins at node

![Graph Image]

a) Draw both the adjacency matrix and adjacency list representations of this graph. Be sure to specify which is which.

b) Assume that the graph is unweighted. Draw both the adjacency matrix and adjacency list representations of this graph. Be sure to specify which is which.
c) Draw the MST (minimum Spanning Tree) resulting from DFS traversal starting from node A. (ignore the weights of the graph)

d) Draw the MST (minimum Spanning Tree) resulting from BFS traversal starting from node A. (ignore the weights of the graph)

Problem 3:

a. Draw the min-heap that results from inserting: 60, 18, 9, 25, 12, 6, 14, 8, 17 in that order into an initially empty heap.

b. Draw the result of doing one delete on the heap you created in part a.
Problem 4: Consider the following graph. If there is ever a decision between multiple neighbor nodes, assume we always choose the letter closest to the beginning of the alphabet first.

![Graph Image]

a. The graph below is: (circle the correct answers):
 - complete
 - directed
 - weighted
 - connected
 - multigraph
 - unweighted
 - subgraph
 - disconnected

b. What is the order of visited nodes using BFS algorithm (starting from node A).

c. What is the order of visited nodes using DFS algorithm (starting from node A).

Problem 5: Write a recursive method called power() that, given an integer n, returns 2^n (2 to the nth power). power() should not invoke any auxiliary methods.

Problem 6:

Given the graph below If there is ever a decision between multiple neighbor nodes, assume we always choose the node with the greatest value to traverse first.
a. What is the order of visited nodes using Prim’s algorithm (starting from node 4).

b. What is the order of visited nodes using Prim’s algorithm (starting from node 1).

c. What is the order of visited nodes using Prim’s algorithm (starting from node 2).

d. What is the order of visited nodes using Prim’s algorithm (starting from node 0).

e. What is the order of visited nodes using Prim’s algorithm (starting from node 5).

Problem 7:

Write a recursive method called `sum()` that takes a positive integer from the user and calculates the sum up to the given number. For example:

input: n=5
output: 15

Problem 8: Write a recursive method called `toBinary()` that converts a decimal number to its binary String representation.
Problem 9: The following array represents a heap stored in an array in the manner discussed in lecture.

```
0  95
1  77
2  88
3  11
4  45
5  85
6
```

a. Show the tree represented by this array:

b. Show the contents of the array after 105 is inserted into the original heap.

c. Show the contents of the array after deletion is executed twice.

Problem 10:
Consider the following sorting algorithms: InsertionSort, SelectionSort, MergeSort, QuickSort, and HeapSort.

a. Which of the above sorting techniques run in worst-case time $O(n \log n)$?

b. Which of the above sorting techniques run in time $O(n)$ in the best case?

c. Which of the above sorting techniques are based on the Divide-and-Conquer strategy?
Problem 11:

a. Does the following array: 20 15 18 7 9 5 12 3 6 2 form a Max-Heap? Justify.

b. Which sort will operate in quadratic time relative to the number of elements in the array?

c. In a max-heap with n elements, extracting the maximal value (and fixing the heap) requires how many key comparisons?

d. Which of the sorting algorithms yield approximately the same worst-case and average-case running time behavior in O(n*lg(n))?

e. Given a set of keys in decreasing order, say n, n-1, n-2, ... 1. We sort it using insertion sort. About how many comparisons are done?

f. If you care more about the worst case performance than average case performance of a sorting algorithm what sorting algorithm(s) would you choose?

g. If you care more about the worst case performance than average case performance of a sorting algorithm and you do not want to use any extra space what sorting algorithm(s) would you choose?

h. If the average case performance matters more than worst case performance which sorting algorithm(s) would you choose?

i. The worst case time complexity of a typical implementation of QuickSort is O(n^2). The worst case occurs when the picked pivot is always an extreme (smallest or largest) element. What improvement could be made to make it O(nlogn) complexity?
Problem 12: The following code represents one of the sorting algorithms we have seen in class.

```java
void sort(int arr[]){
    int i, k, n = arr.length;
    for(i = 0; i < n+2 ; i++){
        int k = n;
        for(int j = i+1; j < n; j++)
            if (arr[j] < arr[k])
                k = j;
        int temp = arr[k];
        arr[j] = arr[i];
        arr[i] = temp;
    }
}
```

a. What is the name of the algorithm?
b. There are 4 errors in the code, fix them.

Problem 13: The following code represents one of the sorting algorithms we have seen in class.

```java
void sort(int arr[]){
    int i, j, n = arr.length;
    for(i = 0; i < n-1; i++)
        for(j = 0; j < n-1; j++)
            if (arr[j] > arr[j+1])
                {
                int temp = arr[j];
                arr[j+1] = arr[j];
                arr[j] = temp;
                }
}
```

a. What is the name of the algorithm?
b. There are 2 errors in the code, fix them.

Problem 14:

a. Bubble Sort → 29, 17, 3, 94, 46, 8, -4, 12
b. Selection Sort → 14, 25, 95, 0, 17, -2, 13, 56, 34

c. Insertion Sort → 6, 7, 4, 11, 8, 1, 10, 3, 5, 2

Problem 15: Suppose that the in quicksort algorithm instead of choosing the pivot as the first element in the array, the middle value of the three values array[first], array[(first+last)/2], and array[last] is chosen as the new pivot. Modify the algorithm we have seen in class to include the new change.

Problem 16: Show the values of the arguments of the Quicksort algorithm as it is applied on the following array: 4,14, 6, 9, 7, 22, 3, 8

Quicksort called with
 low =__________ high =__________

Problem 17: Use a max-Heap to sort the following array in descending order: 4, 10, 3, 5, 1 and show the content of the heap in every step.
Problem 18: Consider the following max-heap:

```
  10
 / \
 5   3
 / \
 2   4
```

a. Show the heap after a deletion operation

b. Show the heap after inserting 15

PART II: Multiple Choice Questions:

1. The time complexity of a quick sort algorithm which makes use of median, found by an O(n) algorithm, as pivot element is
 a) O(n^2)
 b) O(nlogn)
 c) O(nloglogn)
 d) O(n)

2. The time complexity of heap sort in worst case is
 a) O(logn)
 b) O(n)
 c) O(nlogn)
 d) O(n^2)

3. Which of the following algorithm pays the least attention to the ordering of the elements in the input list?
 a) Insertion sort
 b) Selection sort
 c) Quick sort
 d) None

4. What is the time complexity of bubble sort in best case is
 a) O(n)
 b) O(nlogn)
5. Which of the following algorithm design technique is used in the quick sort algorithm?
 a) Dynamic programming
 b) Backtracking
 c) Divide-and-conquer
 d) Greedy method

6. For merging two sorted lists of size m and n into sorted list of size m+n, we require comparisons of
 a) O(m)
 b) O(n)
 c) O(m+n)
 d) O(logm + logn)

7. In a binary max heap containing n numbers, the smallest element can be found in time
 a) O(n)
 b) O(logn)
 c) O(loglogn)
 d) O(1)

8. Which of the following algorithm(s) can be used to sort n integers in range [1…..n3] in O(n) time?
 a) Heap sort
 b) Quick sort
 c) Merge sort
 d) Radix sort

9. If the given input array is sorted or nearly sorted, which of the following algorithm gives the best performance?
 a) Insertion sort
 b) Selection sort
 c) Quick sort
 d) Merge sort

10. Select the appropriate code that performs selection sort.
 a)
    ```java
    int min;
    for(int j=0; j<arr.length-1; j++)
    {
        min = j;
        for(int k=j+1; k<=arr.length-1; k++)
        {
            if(arr[k] < arr[min])
                min = k;
        }
        int temp = arr[min];
        arr[min] = arr[j];
    }
    ```
11. The given array is arr = {1,2,3,4,5}. The number of iterations in selection sort and bubble sort respectively are
a) 5 and 4
b) 1 and 4
c) 0 and 4
d) 4 and 1

12. What is the best case complexity of selection sort?
a) O(nlogn)
b) O(logn)
c) O(n)
d) O(n²)

13. Consider the following code snippet:

```java
public static void my_recursive_function()
{
    my_recursive_function();
}
```
What will happen when the above snippet is executed?
a) The code will be executed successfully and no output will be generated
b) The code will be executed successfully and random output will be generated
c) The code will show a compile time error
d) The code will run for some time and stop when the stack overflows

14. Which of the following statements is true?
a) Recursion is always better than iteration
b) Recursion uses more memory compared to iteration
c) Recursion uses less memory compared to iteration
d) Iteration is always better and simpler than recursion

15. What is the output of the following code?
a) Prints the numbers from 10 to 1
b) Prints the numbers from 10 to 0
c) Prints the numbers from 1 to 10
d) Prints the numbers from 0 to 10
16. For the given graph (G), which of the following statements is true?

(a) G is a complete graph
(b) G is not a connected graph
(c) G is a connected graph
(d) G is a tree

16. For a given graph G having v vertices and e edges which is connected and has no cycles, which of the following statements is true?

(a) v = e
(b) v = e + 1
(c) v + 1 = e
(d) None of the mentioned

18. What would be the DFS traversal of the given Graph?

(a) ABCDE
(b) AEDCB
(c) EDCBA
(d) ADECB

19. For a sparse graph (a graph that does not contain a lot of edges) an adjacency list is more space efficient against an adjacency matrix.
20. For the given conditions, which of the following is in the correct order of increasing space requirement?
 i) Undirected, no weight
 ii) Directed, no weight
 iii) Directed, weighted
 iv) Undirected, weighted
 a) ii iii i iv
 b) i iii ii iv
 c) iv iii i ii
 d) i ii iii iv

21. Which of the following is the valid min heap?
 a)
22. Which one of the following array elements represents a binary min heap?
 a) 12 10 8 25 14 17
 b) 8 10 12 25 14 17
 c) 25 17 14 12 10 8
 d) 14 17 25 10 12 8

23. What will be the position of 5, when a max heap is constructed on the input elements 5, 70, 45, 7, 12, 15, 13, 65, 30, 25?
 a) 5 will be at root
 b) 5 will be at last level
 c) 5 will be at second level
 d) 5 can be anywhere in heap
24. If we implement heap as min-heap, deleting root node (value 1) from the heap. What would be the value of root node after second iteration if leaf node (value 100) is chosen to replace the root at start.
 a) 2
 b) 100
 c) 17
 d) 3

25. Which of the following is false in the case of a spanning tree of a graph G?
 a) It is tree that spans G
 b) It is a subgraph of the G
 c) It includes every vertex of the G
 d) It can be either cyclic or acyclic

26. Every graph has only one minimum spanning tree.
 a) True
 b) False

27. Which of the following is false?
 a) The spanning trees do not have any cycles
 b) MST have n – 1 edges if the graph has n edges
 c) Edge e belonging to a cut of the graph if has the weight smaller than any other edge in the same cut, then the edge e is present in all the MSTs of the graph
 d) Removing one edge from the spanning tree will not make the graph disconnected

28. Which of the following is not the algorithm to find the minimum spanning tree of the given graph?
 a) DFS-traversal algorithm
 b) Prim’s algorithm
 c) Kruskal’s algorithm
 d) Dijkstra algorithm
29. Consider the graph shown below. Which of the following are the edges in the MST of the given graph?

![Graph Image]

a) (a-c)(c-d)(d-b)(d-b)
b) (c-a)(a-d)(d-b)(d-e)
c) (a-d)(d-c)(d-b)(d-e)
d) (c-a)(a-d)(d-c)(d-b)(d-e)

30. The height of a heap with n elements:

a) n+1
b) log(n)
c) n log(n)
d) None of the above