CSc 2720 - Data Structures: Lab 5

How to Submit:

Please submit your answers in icollege once you have completed. Failure to submit will result in a *zero* for this lab.

Refresher:

We have seen in class that deletion and insertion operations in a linked list necessitate a `curr` and `prev` pointers. To delete a node which `curr` references: `prev.next = curr.next;`

Problem 1:

Write a function `deleteAtIndex` that takes a linked list `head` and an integer `index` as an argument, looks for the node in the linked list at `index` and delete the node from the linked list (disconnect it from the list).

Assumptions:

- Users always gives a valid index.
- User will *never delete the head/first node* in the list. (i.e: the user will never enter index=0).
- The linked list will have at least two elements.

Example: Given linked list -- [1,2,3], which looks like the following:

```
1 ------ 2 ------ 3
```

Input: `index = 1`

Output: List After Deletion: 1 3
public class Node {
 int item;
 Node next;
 // Node Constructor
 Node(int d) {
 item = d;
 next = null;
 }
}

public class Tester {
 public static void main(String[] args){
 Node head = new Node(1);
 Node second = new Node(2);
 Node third = new Node(3);
 head.next = second;
 second.next = third;

 /* The current linked list is as follows:
 * head second third
 * +-------+-------+-------+
 * | 1 | 2 | 3 |
 * +-------+-------+-------+
 */
 System.out.println("List Before Deletion");
 printLinkedList(head); // Should be 1 2 3

 // User wants to delete at index 2
 deleteAtIndex(2, head);
 System.out.println("List After Deletion at index 2");
 printLinkedList(head); // Should be 1 2

 // User wants to delete at index 1
 deleteAtIndex(1, head);
 System.out.println("List After Deletion at index 1");
 printLinkedList(head); // Should be 2
 }
 // To pass the linked list to a function, you only need to pass the head
 public static void deleteAtIndex(int value, Node head){
 Node prev, curr;
 int counter = 0; // increment count as you traverse the list
 // INSERT CODE HERE
 }
 // Node traversal and printing
 public static void printLinkedList(Node head){
 for(Node cur = head; cur!=null; cur=cur.next){
 System.out.print(cur.item+" ");
 }
 System.out.println();
 }
}