Chapter 23
Merging Priority Queues

The Skew Heap

- Skew heap – heap-ordered binary tree without a balancing condition.
- With these, there is no guarantee that the depth of the tree is logarithmic.
- It supports all operations in logarithmic amortized time.
- It is somewhat like a splay tree.

Merging

- Many operations with heap-ordered trees can be done using merging.
- Operations:
 - Insert – create a one-node tree containing x and merge that tree into the priority queue.
 - Find minimum – return the item at the root of the priority queue.
 - Delete minimum – delete the root and merge its left and right subtrees.
 - Decrease the value of a node – assume that p points to the node in the priority queue. Lower the value of p’s key. Detach p from its parent, which yields two priority queues. Merge the two resulting priority queues.
- Thus, we need only see how merging priority queues is implemented.

Simplistic Merging of Heap-Ordered Trees

- Assume we have two heap-ordered trees, H_1 and H_2, that need to be merged.
- If either tree is empty, the other tree is the merged tree.
- Otherwise, compare the roots.
- Recursively merge the tree with the larger root into the right subtree of the tree with the smaller root.
- See Figure 1.

![Figure 1 Simplistic merge of heap-ordered trees](image)

- The practical effect of the above operation is in fact an ordered arrangement consisting only of a single right path.
- Thus the operations can be linear.

The Skew Heap – A Simple Modification
- We can make a simple modification to the merge operation and get better results.
- Prior to the completion of a merge, we swap the left and right children for every node in the resulting right path of the temporary tree.
- Consider the example in Figure 2.

\[
\begin{array}{c}
\text{3} & \text{8} \quad + \quad \text{4} & \text{5} \\
\text{6} \\
\end{array}
\longrightarrow
\begin{array}{c}
\text{2} & \text{4} \quad + \quad \text{3} & \text{1}
\quad \quad \quad \quad \\
\text{8} & \text{9} & \text{7} & \text{6}
\end{array}
\]

Figure 2 Merging a skew heap

- When a merge is performed in this way, the heap-ordered tree is also called a skew heap.
- Let’s consider this operation from a recursive point of view. Let \(L \) be the tree with the smaller root and \(R \) be the other tree.
 1. If one tree is empty, the other is the merged result.
 2. Otherwise, let \(Temp \) by the right subtree of \(L \).
 3. Make \(L \)'s left subtree its new right subtree.
 4. Make the result of the recursive merge of \(Temp \) and \(R \) the new left subtree of \(L \).
- The result of child swapping is that the length of the right path will not be unduly large all the time.
- The amortized time needed to merge two skew heaps is \(O(\log n) \).

The Pairing Heap

- The pairing heap is a structurally unconstrained heap-ordered \(M \)-ary tree for which all operations, except deletion, take constant worst-case time.
- Deletion could take linear worst-case time.
- Consider the pairing heap shown in Figure 3.

\[
\begin{array}{c}
\text{6} & \text{3} & \text{4} \\
\text{10} & \text{13} & \text{11} & \text{15} & \text{12} & \text{17} & \text{19}
\quad \quad \quad \quad \quad \\
\text{16} & \text{18}
\end{array}
\]

Figure 3 Abstract pairing heap

- The actual implementation, using a left child/right sibling representation is shown in Figure 4.
- Constant time operations on a pairing heap
 - Merging
 - Make the heap with the larger root the new first child of the heap with the smaller root
 - Insertion
 - A special case of merge
 - Decrease key
 - Decrease the value of the requested node
 - Detach the adjusted node from its parent and merge the two pairing heaps that result
- Deletion
 - Remove the root of the tree creating a collection of heaps
 - If there are \(c \) children of the root, combining these heaps requires \(c - 1 \) merges
 - Consequently, this operation can take \(O(n) \) time.
 - The order of the merging is important.
 - A two-pass merge has been proposed
 - First scan – merges pairs of children from left to right
 - Second scan – merge the rightmost tree that remains from the first scan with the current merged result.
 - Suppose we have children \(c_1 \) through \(c_8 \).
 - The first pass merges \(c_1 \) and \(c_2 \), \(c_3 \) and \(c_4 \), \(c_5 \), and \(c_6 \), and \(c_7 \) and \(c_8 \).
 - The result is \(d_1 \), \(d_2 \), \(d_3 \), and \(d_4 \).
 - The second pass merges \(d_3 \) and \(d_4 \); \(d_2 \) is then merged with the result, and \(d_1 \) is then merged with the result of that merge.
 - See Figure 5 after deleting 2.
Dijkstra’s Shortest Weighted Path Algorithm

- Find the shortest path (measured by total cost) from a designated vertex S to every vertex. All edge costs are nonnegative
- From current node, set the cost of adjacent nodes to that of current node plus the path weight. If the node has not been visited, set the cost.
- Next node visited is the one with the least cost associated with it.
- Figure 6 shows an example.
Figure 6 Example of Dijkstra's algorithm