Chapter 4
Modules for Introducing Threads

David P. Bunde

Knox College
dbundle@knox.edu
TABLE OF CONTENTS

LIST OF FIGURES

<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>98</td>
</tr>
</tbody>
</table>

CHAPTER 4 MODULES FOR INTRODUCING THREADS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1 Introduction</td>
<td>100</td>
</tr>
<tr>
<td>4.2 Prime counting</td>
<td>102</td>
</tr>
<tr>
<td>4.2.1 Using this module</td>
<td>103</td>
</tr>
<tr>
<td>4.2.2 Sequential code</td>
<td>103</td>
</tr>
<tr>
<td>4.2.3 Step by step parallelization</td>
<td>104</td>
</tr>
<tr>
<td>4.2.4 Followup assignment</td>
<td>115</td>
</tr>
<tr>
<td>4.3 Mandelbrot</td>
<td>116</td>
</tr>
<tr>
<td>4.3.1 Using this module</td>
<td>117</td>
</tr>
<tr>
<td>4.3.2 Sequential program</td>
<td>118</td>
</tr>
<tr>
<td>4.3.3 Step by step parallelization with OpenMP</td>
<td>119</td>
</tr>
<tr>
<td>4.3.4 Parallelization using explicit threads</td>
<td>127</td>
</tr>
</tbody>
</table>

REFERENCES

<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>129</td>
</tr>
<tr>
<td>Figure 4.1</td>
</tr>
<tr>
<td>Figure 4.2</td>
</tr>
<tr>
<td>Figure 4.3</td>
</tr>
<tr>
<td>Figure 4.4</td>
</tr>
<tr>
<td>Figure 4.5</td>
</tr>
<tr>
<td>Figure 4.6</td>
</tr>
<tr>
<td>Figure 4.7</td>
</tr>
<tr>
<td>Figure 4.8</td>
</tr>
<tr>
<td>Figure 4.9</td>
</tr>
<tr>
<td>Figure 4.10</td>
</tr>
<tr>
<td>Figure 4.11</td>
</tr>
<tr>
<td>Figure 4.12</td>
</tr>
<tr>
<td>Figure 4.13</td>
</tr>
<tr>
<td>Figure 4.14</td>
</tr>
<tr>
<td>Figure 4.15</td>
</tr>
<tr>
<td>Figure 4.16</td>
</tr>
</tbody>
</table>
CHAPTER 4

MODULES FOR INTRODUCING THREADS

David P. Bunde

Knox College

dbundle@knox.edu

ABSTRACT

This chapter presents a pair of modules for introducing students to parallel programming. Each module is built around an exploratory exercise to parallelize an application, which can be used in lab or lecture. They illustrate fundamental concepts such as speedup, race conditions, privatizing variables, and load balance. Variations teach students about explicit threading (in C, C++, or Java) and OpenMP (in C/C++).

Relevant core courses: Systems, CS2

Relevant PDC topics: Shared memory: Compiler directives/pragmas (A), libraries (A); Task/thread spawning (A); Data parallel: parallel loops for shared memory (A); Synchronization: critical regions (A); Concurrency defects: data races (C); Load balancing (C); Scheduling and mapping (K); Speedup (C)

Learning outcomes: The student will be able to use common thread libraries for new problems and also have a working knowledge of some basic concepts of parallel programming.

Context for use: First course introducing shared memory programming. Assumes prior background in either Java or C/C++.
4.1 Introduction

This chapter presents a pair of modules for teaching basic thread programming. Each module is built around an example application, stepping through the process of parallelizing that application. The first module uses the example of counting the number of primes up to some value. The second uses the example of generating an image of the Mandelbrot set. Each module includes a summary of the author’s experiences teaching it and advice for using it at other institutions.

Target audience. The materials in this chapter are intended for instructors who are first introducing their students to parallel programming and concurrency. The author has primarily used these examples in a systems programming course that covers basic operating systems and networking concepts. That course has a CS 2 prerequisite, though some students have additional prior CS coursework. The modules can also potentially be used late in CS 2 or as the first examples in a more advanced course on parallel programming.

Threads and OpenMP. Both modules teach shared memory programming with threads. Such programs use multiple threads to simultaneously execute different parts of the program. Each thread has its own program counter and stack (i.e. distinct local variables), but all the threads run in the same memory space, with interactions through shared variables, either global variables in C or static variables in Java.

The modules use two different approaches for creating and managing threads. The first is explicit threading, in which the programmer uses system calls to directly create threads and manage interactions between them. The example code does this using the POSIX-standard pthreads library in C, the \texttt{std::thread} class in C++11, and the \texttt{Thread} class in Java. The second thread creation and management approach, used only in the second module, is OpenMP. OpenMP is a standardized extension of C (and C++) in which the compiler generates the thread-related code based on hints (called \textit{pragmas}) added to a sequential

\footnote{Partial support for the work described in this chapter was provided by NSF grant DUE-1044299.
program.

Topics covered. Both modules cover the idea of threads and at least one notation for using them. In addition, they both cover the following concepts:

- Speedup
- Race conditions
- Load balance
- Privatization of variables, the act of giving threads private copies of a variable to reduce the amount of sharing.

In addition to these shared concepts, each module covers some additional concepts not included in the other. The prime counting module adds the following:

- Critical sections and mutual exclusion

The Mandelbrot module adds the following:

- Parallel overhead, the extra work added to a program in the process of parallelizing it.
- Dynamic scheduling, in which the tasks performed by each thread are determined at run time.

Using these modules. The author has typically used only one of these modules in any given course since the modules cover many of the same concepts and class time is always limited. Of the two, the prime counting example seems to be simpler since its given code is shorter and less complicated. Thus, it should be used first if both are taught. Language choice may also factor into the decision of which module to use; the prime counting example can be done in either Java, C, or C++, while the mandelbrot exercise must be done in C or C++ since OpenMP is only available in those languages.
Computing environment. The running times discussed in this chapter were measured on two different systems. The majority are from a 16-core AMD Opteron 6272 running Fedora Linux release 19. In Section 4.3 we also contrast results on that system with times from a MacBook Pro with a dual-core Intel Core i5 processor (dual-core with hyper-threading support for 2 tasks/core) running Mac OS X version 10.6.8 (Snow Leopard). The C and C++ examples were compiled using gcc version 4.8.3 on the Linux system and 4.2.1 on the Mac. On both systems, we used the command line options -Wall (enable all warnings), -lpthread (include the POSIX-standard pthread library to implement threading), -lm (include the math library), and -fopenmp (activate OpenMP; only included when using OpenMP). In addition the C standard was specified. For C we specified the C 99 standard with -std=c99 (later standards should work as well) and for C++ we specified C++11 with -std=c++11 (required for the C++11 threading). The Java examples were compiled as Java version 1.7. The running times were measured using the Unix command time.

The specific running times will vary based on your hardware and software configuration so instructors adopting these materials are encouraged to time the code on their own systems and to rescale the problem sizes.

4.2 Prime counting

This section describes the first module, which is based on a program counting prime numbers. A prime is an integer whose only positive integral divisors are 1 and itself. Primes are one of the main topics of study of number theory and also have great practical importance in computer cryptography. Their distribution among the integers is related to the Riemann hypothesis, one of the most important open problems in mathematics.

This module was previously presented in [1]; this version expands on that presentation, adding more about the author’s experiences, the C and C++ versions of the module, and a discussion of issues arising with more than two cores. Given code and the author’s handouts for this module are available at [2].
4.2.1 Using this module

The main part of this module involves walking through the parallelization of a program that counts the number of primes in a range. The author has always done this in a lab. The students are given the sequential program and follow a handout that leads them through the process of parallelizing it (i.e. the entire process outlined in Section 4.2.3). The instructor is available for questions, but the intent is that the students work through most of the process themselves. Prior to this lab, the instructor has briefly introduced the idea of threads in lecture. Following the lab, the instructor also talks about each part of the lab to reinforce the lessons learned and to answer questions. Afterwards, the students are given a followup assignment as homework. (One possible assignment is discussed in Section 4.2.4)

For courses without class time allocated to working in laboratory, there are a couple of alternatives. The first is for the parallelization to be done in lecture, with the instructor illustrating the process. This loses the hands-on aspect since the students are watching rather than changing the code themselves. The second alternative is to give the lab handout to students as an assignment. In this case, it would be harder for students to get assistance, but the author does not believe this would be a serious issue since most students in his course completed the lab on their own. A potentially bigger concern is that some students may not work on the lab, though this would be mitigated by requiring the followup assignment.

4.2.2 Sequential code

Now we describe the initial sequential program that students are given. It has a function isPrime that returns whether its argument is prime. To test the number \(n \) for primality, this function tries all integers from 2 to \(\sqrt{n} \) as possible divisors. (We only have to check up to \(\sqrt{n} \) since any divisor above \(\sqrt{n} \) will be paired with one below \(\sqrt{n} \).) The program uses isPrime to count the number of primes up to some value finish, using the code shown in Figure 4.1. This code “pre-records” that 2 is prime and then tests odd integers up to finish.

For the value of finish, the author used 2,000,000. The reader should choose a value
Figure (4.1) Loop to count the number of primes up to \texttt{finish}

that is appropriate to the machines on which they are running. The fastest version should take a measurable amount of time and the sequential version should take at least a couple of seconds. Students are used to instant feedback from their programs and so are strongly motivated to speed this program up so they do not have to wait. (When this example has been used with larger values of \texttt{finish}, some students require reassurance that the initial program is correct because they thought it was in an infinite loop and killed it before completion.)

4.2.3 Step by step parallelization

Now we step through the process of parallelizing this program. As described above, this is intended as a discovery process, either during lecture or in a lab. Thus, the first versions are incorrect; subsequent versions correct the bugs and then tune the performance.

\begin{verbatim}
long pCount = 1; //number of primes found (starts with 2)
long nextCand = 3; //next number to consider

while(nextCand < finish) {
 if(isPrime(nextCand))
 pCount++;
 nextCand += 2;
}
\end{verbatim}

Creating multiple threads. The first step is creating multiple threads. The main part of this is to move the \texttt{nextCand} loop shown in Figure 4.1 into a function for a thread to run. Each thread will run this function for a different range of candidate numbers. In order to do this, the thread function needs to know the endpoints of the range of candidate numbers to check. This is simplest in C++\footnote{For brevity, we specify the language rather than the specific thread implementation. Thus, we use “C++” to denote the C++11-standard \texttt{std::thread} class and “C” to denote the POSIX-standard \texttt{pthreads} library.} where the endpoints can be passed as a pair of integer arguments. These arguments, along with the thread function, are passed
struct prime_arg {
 long start, finish;
};

long pCount = 1; // global variable; we already recognize 2 as prime

void* prime_thread (void *arg) {
 struct prime_arg *parg = (struct prime_arg *) arg;
 for (long i=parg->start; i<parg->finish; i+=2)
 if (isPrime(start))
 pCount++;
 return &pCount; // not used, but function must return a pointer
}

int main () {
 pthread_t t1, t2;
 struct prime_arg t1arg = { 3, 1000000 };
 struct prime_arg t2arg = { 1000001, 2000000 };
 pthread_create(&t1, NULL, prime_thread, &t1arg);
 pthread_create(&t2, NULL, prime_thread, &t2arg);
 printf ("%ld primes found\n", pCount);
}

Figure (4.2) Sketch of first multi-threaded prime counter in C (broken)

to the constructor for std::thread. In C, thread functions only take a single argument
so the endpoints must be placed in a struct. A pointer to this struct is then passed to
the pthread_create function, which creates a thread. In Java, threads are represented with
Thread objects. The thread body is specified via a Runnable object passed to the constructor
and the range endpoints must be stored as attributes of the Runnable object.

In all three of the implementations, the threads must be able to increase the count of
primes found, which we store in a variable pCount. As a first cut toward updating pCount,
we make it a shared variable which each thread increments as primes are found.3 Sketches
of the code are shown in Figures 4.2 (C), 4.3 (C++) and 4.4 (Java).

Joining the threads. Running the code in Figure 4.2, 4.3, or 4.4 gives a very
underwhelming result. The program is very fast, completing without noticeable delay, but is

3This turns out to be a bad decision and we revisit it below.
long pCount = 1;

void prime_thread(int start, int finish) {
 for(long i = start; i < finish; i+=2)
 if(isPrime(i)) {
 pCount++;
 }
}

int main () {
 std::thread first(prime_thread, 3, 1000000);
 std::thread second(prime_thread, 1000001, 2000000);
 std::cout << pCount << " primes found" << std::endl;
}

Figure (4.3) Sketch of first multi-threaded prime counter in C++ (broken)

public class ThreadedPrimes {

 public static int pCount;

 static class PrimeFinder implements Runnable {
 private long from;
 private long to;

 // constructor that takes values for from and to

 public void run() {
 for(long i = from; i<to; i+=2)
 if(isPrime(i))
 pCount++;
 }

 public static void main(String args[]) throws InterruptedException {
 pCount = 1; // (starting with 2)
 Thread t1 = new Thread(new PrimeFinder(3, 1000000));
 Thread t2 = new Thread(new PrimeFinder(1000001, 2000000));
 t1.start();
 t2.start();
 System.out.println(pCount + " primes found");
 }
 }

Figure (4.4) Sketch of first multi-threaded prime counter in Java (broken)
incorrect. The C and Java versions find very few primes (possibly none other than 2, which we identified ahead of time). The C++ version exits with an error message: “terminate called without an active exception”. In all cases, the problem is that the program creates and starts the threads, but fails to wait for them to complete before printing the result and exiting. Waiting for thread completion is called *joining*, a term that captures the idea of the computation that has been distributed over several threads joining together. A single join call waits for a single thread. Thus, we need to add

```c
pthread_join(t1, NULL);
pthread_join(t2, NULL);
```

to the C version of our program,

```c
first.join();
second.join();
```

to the C++ version, or

```c
t1.join();
t2.join();
```

to the Java version. These calls should be added after both threads are started, i.e. after the calls to `pthread_create`, the declaration of the `std::thread` objects, or the calls to `Thread.start`.

Fixing race condition. After adding the calls that join the threads, the running time will be more reasonable, but the number of primes found still does not match the (correct) number found by the sequential version. In fact, the number of primes reported by the program likely varies every time the program runs, with the reported number always below the correct value. The variation is caused by a race condition, a concurrency bug in which a bad interleaving of operations executed by different threads can give an incorrect result.
In this case, the problem has to do with the variable \texttt{pCount}, which both threads are updating. Whenever either thread identifies a prime number, it uses the \texttt{++} operator to increment this variable. Although the use of a single operator makes this increment appear to be a single operation, executing the operator actually requires three distinct operations: reading the current value of \texttt{pCount}, adding 1 to it, and then storing the new value. If both threads try to increment \texttt{pCount} simultaneously, one of the updates can be lost.

Figure 4.5 depicts one possible way that operations from two threads can interleave and lose an update. The figure shows the operations of each thread, each thread’s local (register-stored) value of \texttt{pCount} after each operation, and the globally-visible value of \texttt{pCount} stored in memory. Initially, \texttt{pCount} has value 5. After both \texttt{++} operators are executed, \texttt{pCount} should have value 7 since it was incremented twice, but instead it has the incorrect value 6; one of the increments has been lost.

In order to make our program properly count the number of primes, we need to avoid this race condition. Specifically, we need one thread to complete the entire \texttt{++} operation before the other thread begins it. We can call the line with the \texttt{++} operation a critical section, meaning that it is a piece of code that must run all together to guarantee correct execution.

To protect the critical section from interruptions, we will use a lock, also called a mutex because it provides mutual exclusion, the phenomenon of only one thread being in the critical section at a time. Mutexes provide two main operations, \texttt{lock} and \texttt{unlock}. At all times, their state is either \texttt{locked} or \texttt{unlocked}. Mutexes are unlocked when they are created, move to
locked if their lock operation is invoked, and move to unlocked if their unlock operation is invoked. Complicating this is that operations that would “change” the state to its current value do not proceed until the state changes. For example, if the lock operation is performed on a mutex that is already locked, that operation will block (i.e. wait) until the mutex becomes unlocked.

A mutex can be used to achieve mutual exclusion for a critical section by adding a call to lock the mutex at the beginning of the critical section and one to unlock it at the end. With this arrangement, any thread wishing to enter the critical section must first lock the mutex and the mutex remains locked until that thread exits the critical section. Thus, if one thread is in the critical section and another thread attempts to enter it, the second thread will block until the first thread exits the critical section.

To achieve mutual exclusion for our application in C, we replace the single line incrementing `pCount` with

```c
1  pthread_mutex_lock(&m);
2  pCount++;
3  pthread_mutex_unlock(&m);
```

where `m` is a global variable for use as a mutex. It is declared and initialized with the following lines:

```c
1  pthread_mutex_t m;  // declared as a global variable
2    ...  
3  pthread_mutex_init(&m, NULL);  // initialized in main
```

This ensures that only one thread tries to increment `pCount` at a time, ensuring that no updates are lost.

The C++ version is similar, albeit with minor syntactic differences since the mutex is now an object. It is declared and initialized with

```c
1  std::mutex m;  // declared as a global variable
```

and then used to protect the increment line with
m. lock();

pCount++;

m. unlock();

Note that this code requires including the mutex header file.

There are a couple of differences in how we achieve mutual exclusion in Java. First of all, Java does not have separate lock/mutex objects. Instead, every Java object has an associated mutex. Since the program does not create any objects thus far, we can add one as a class variable:

```java
static Object m = new Object(); // declared outside the methods
```

We could use a different class, but chose Object to emphasize that the object m is only used as a mutex. Then, to protect the increment operation, we enclose it in a synchronized block:

```java
synchronized (m) {
    pCount++;
}
```

Despite the difference in syntax, this performs essentially the same operations as the other versions; the mutex associated with m is locked at the beginning of the synchronized block (blocking if necessary), then the increment is performed, and finally the mutex is unlocked. This syntax is less flexible in general, but it makes the relationship between locking and unlocking explicit. It also prevents the programmer from forgetting to unlock a mutex at the end of a critical section.

Now that the code is correct, we can check its performance. On my system, the C version of the sequential code runs in 2.08 seconds and the corrected parallel version runs in 1.48 seconds. (I get slightly different running times for the other versions, but our main focus will be on the ratios between running times, none of which are materially different between the languages.) Thus, it achieves a speedup of 2.08/1.48 = 1.41, meaning that the parallel program runs 1.41 times as fast as the sequential one. This is an improvement, but
not very impressive; we’d like something closer to linear speedup, a speedup equal to the number of cores we are using. In our case, since we are using 2 threads and the work they perform is completely independent (since no primality test depends on any other), the goal would be a speedup close to 2.

Privatizing the counter. One possible issue with our parallel program that could be preventing it from achieving a high speedup is the way that it increments \(p\text{Count} \). For each increment, the program has to lock and then unlock a mutex. This could undermine our efforts to achieve a high speedup in two ways. First of all, it incurs a relatively high amount of overhead, instructions that are added as part of parallelizing the program. If we execute enough extra instructions, we lose all the benefit of being able to execute instructions faster. Secondly, the mutex causes threads to wait since only one thread can execute the critical section at a time. This is good in that it allows us to achieve mutual exclusion, but having threads wait also undermines the benefit of parallelism. In an extreme case, a program can be completely serialized, meaning that only one thread runs at a time due to mutexes that cause all other threads to block. If this happens, the program gains no benefit from parallelism, while keeping all the additional overhead.

To avoid these issues, we will use a common technique called privatizing variables, in which shared variables are replaced with private copies to eliminate the overhead involved in safely sharing them. In our case, the variable \(p\text{Count} \) is shared. Looking at this variable, the individual threads do not really use its current value. Thus, instead of incrementing \(p\text{Count} \) each time a prime is found, each thread can have a private counter to record the number of primes it discovers. Then, after the thread has identified all the primes in its range, it can use this private counter to update the shared variable \(p\text{Count} \). Since only this last step involves a shared variable, it is the only one that requires protection with a mutex. Figures 4.6 (C), 4.7 (C++), and 4.8 (Java) show the key functions with this modification.

When we run the program after privatizing \(p\text{Count} \), we get a minimal improvement in speedup (1.44 from 1.41). For this program, the shared variable was not a big problem. One
```c
void* prime_thread (void *arg) {
    struct prime_arg *parg = (struct prime_arg *) arg;
    long localCount = 0;
    for (long i=parg->start; i<parg->finish; i+=2)
        if (isPrime(start))
            localCount++;

    pthread_mutex_lock(&m);
    pCount += localCount;
    pthread_mutex_unlock(&m);
    return &pCount; //not used, but function must return a pointer
}
```

Figure (4.6) Function `prime_thread` for C program with `pCount` privatized

```c
void prime_thread(int start, int finish) {
    long localpCount = 0;
    for (long i = start; i < finish; i+=2)
        if (isPrime(i)) {
            localpCount++;
        }

    count_mutex.lock();
    pCount += localpCount;
    count_mutex.unlock();
}
```

Figure (4.7) Function `prime_thread` for C++ program with `pCount` privatized

```java
public void run() {
    long localCount = 0;
    for (long i = from; i<to; i+=2)
        if (isPrime(i))
            localCount++;

    synchronized(m) {
        pCount += localCount;
    }
}
```

Figure (4.8) Method `run` for Java program with `pCount` privatized
way to understand this is to observe that the critical section is small relative to the other work each thread is doing, most of which is in the call to isPrime. Since the sequential program spends very little of its time in what becomes the critical section, the threads spend very little time blocked trying to get into it.

Because privatization did not lead to a big performance win in this case, some instructors may want to skip this part of the module. I chose to include it because the technique is important in some cases. In particular, the benefit of privatization increases as the number of threads grows since this makes it more likely that a thread will be in the critical section at any given time. Thus, the technique is likely to become more important over time as processors have more cores.

Improving load balance. Another common factor limiting parallel programming performance, and one that is more important for the prime counting program, is *load balance*, how evenly the work is divided between the threads. If the work is split unevenly (*poor load balance*), some threads will take much longer than others. Since the program does not complete until the last thread finishes, this makes the overall program slower.

How does this apply to our program? At first glance, the program’s load balance seems good because each thread receives a nearly-equal sized range of numbers to test for primality; the first thread receives 3 through finish/2 while the second receives finish/2 through finish. This impression of equal parts turns out to be an illusion, however, because it takes longer to test the primality of some numbers than others. Consider Figure 4.9 which contains the body of isPrime in Java (the C/C++ version merely replaces Math.sqrt with sqrt and 0/1 for false/true). This code returns as soon as a divisor of num is found. Thus, its running time is proportional to the value of the smallest divisor for composite (i.e. not prime) numbers and to limit for primes. This leads to the following two opposing arguments about the load balance:

- The first thread does more work: There are more prime numbers in the first thread’s range (the lower half) and primes take longer to test than composite numbers.
long limit = (long) Math.sqrt(num);
for (long i = 2; i <= limit; i++)
 if (num % i == 0)
 return false;
return true;

Figure (4.9) Body of isPrime method

- The second thread does more work: It is testing larger numbers so its value of limit will
 be higher. This means its primes require more work than the first thread’s. Composite
 numbers whose smallest divisor is near the limit will also require more work than
 composite numbers in the first half.

Empirically, the second argument turns out to be the dominant factor. This can be verified
by splitting the numbers unevenly; the program’s running time improves if the ranges are
split at a value slightly above finish/2. For example, when finish is 2,000,000, splitting
at 1,100,000 works, improving the speedup to 1.69.

The problem with improving the load balance by adjusting the split point is the difficulty
of identifying a good value. For the particular problem of counting prime numbers, there is
a clever trick that easily gives good load balance. The idea is to give both threads numbers
throughout the entire range; give the first thread numbers of the form 3 + 4k and the second
thread numbers of the form 5 + 4k (i.e. start the first thread at 3, start the second thread at
5, and increment by 4 instead of 2 to get the next number). This simple change eliminates
the need for tuning the load balance and brings the speedup to 1.86. (One note about this
trick: It does not work for odd numbers of threads. For example, applying it with three
threads would split the numbers into the forms 3 + 6k, 5 + 6k, and 7 + 6k, but all numbers
of the first form are multiples of 3, which are tested very quickly.)

The main part of the module concludes with the corrected load balance, which gives a
speedup of 1.86.
Figure (4.10) Body of isPrime method that uses previously-identified primes as possible divisors

4.2.4 Followup assignment

As an exercise related to this module, students were given a homework assignment based on another variation of prime counting. Instead of determining the primality of \(n \) by testing all integers from 2 to \(\sqrt{n} \), it is sufficient to just test the primes in this range. Figure 4.10 shows the body of a Java function isPrime based on this idea. The variable primes is an ArrayList containing the primes discovered thus far; this list is built as the primes are discovered (by code outside isPrime). Comparison with Figure 4.9 shows that the two methods are quite similar. Avoiding the extra divisor tests yields a large savings, however; the students are given a sequential program utilizing this approach that is actually faster than the best parallelized version based on the previous method.

The students’ task was to parallelize this new program, with the suggestion that they sequentially compute the primes up to \(\sqrt{\text{final}} \). They were also asked in a written question what would go wrong if they just parallelized everything, using the new isPrime with the program developed in the previous section. (The issue is a race condition.) This assignment forces the students to write some threading code outside of the lab environment. The resulting code is closely related to what they did in lab, but the written question helps check for conceptual understanding.

One issue with adapting this assignment for use in C is the lack of a built in structure equivalent to ArrayList. (Note that it could be replaced with vector in C++.) This
issue can be massaged by allocating a sufficiently-large array to store the discovered primes, though this approach limits the potential value of final. An alternative is to provide an implementation of an array-based list, but then the students must either trust or understand the given code. (A linked list could also be used, but array-based lists are faster for the operations needed here; the performance is important since the list will be built during the program’s sequential part, before the threads are launched.)

4.3 Mandelbrot

This section describes the second module, which is based on a program creating an image of the Mandelbrot set. The Mandelbrot set is the well-known fractal image depicted in Figure 4.11 where the black points are those inside the set. To determine if a point \((x, y)\) is inside the set, it is interpreted as a complex number \(c = x + yi\) and the series \(z_1 = c,\)

\[
z_{n+1} = z_n^2 + c
\]

is computed. Formally, the Mandelbrot set is all points for which this series is bounded. For example, the point \((-1, 0)\) is represented as \(c = z_1 = -1\), which gives the following series:

\[
z_1 = -1, \quad z_2 = 0, \quad z_3 = -1, \quad z_4 = 0, \quad \ldots
\]

This is clearly bounded, never exceeding magnitude 1. Different behavior is seen for \((1, 0)\), which yields a series whose elements’ magnitude grow without bound:

\[
z_1 = c = 1, \quad z_2 = 2, \quad z_3 = 5, \quad z_4 = 26, \quad \ldots
\]

In practice, depictions of the Mandelbrot set are typically computed by iteratively generating \(z_i\) until either the magnitude of some \(z_i\) exceeds a threshold (points outside the set) or a specified number of iterations have been performed (points in the set). The image in Figure 4.11 was generated with a threshold of 2 and stopping after 1,000 elements. For the points above, this would generate all 1,000 elements of the series for \((-1, 0)\), but stop the series for \((1, 0)\) at \(z_3\), the first point whose magnitude exceeds 2.

Users of this module are not required to understand the mathematics behind the Man-
The Mandelbrot set. The main point is that computing an image such as shown in Figure 4.11 is a computational task requiring sufficient work to justify parallelization. The only requirement is that the students are able to examine the code determining if a point is in the Mandelbrot set (see Figure 4.13) and observe that its running time varies based on the iteration at which z_i surpasses the threshold.

More information on the Mandelbrot set, including multi-colored images that distinguish points based on how soon their series exceeds the threshold, is available from [3]. Given code and the author’s handouts related to this module are available at [4].

4.3.1 Using this module

As with the prime counting module, the main part of this module is parallelizing a sequential application. Section 4.3.3 steps through the process of doing this using OpenMP and Section 4.3.4 discusses doing it with explicit threading calls. Since each approach has advantages (discussed in Section 4.3.4), there are many possible ways that this module can be used. Most recently, the author has had the students parallelize the program using the approaches one after the other in consecutive lab periods (scheduled specifically to facilitate this). Other terms, he has stepped through the OpenMP approach in lecture either before or after a lab in which the students followed the explicit threading approach. His sense is
that using a hands-on lab was more effective than only lecturing with this material. That said, in courses without a laboratory component, the module could be used as an example for lecture or students could complete the “lab” on their own as an out-of-class activity.

For any of these alternatives, the module should be prefaced with a lecture or reading that briefly introduces the idea of threads. The author also recommends an in-class discussion following the module to reinforce the concepts and answer questions.

The program as given creates an 800×800 image of the Mandelbrot set. Depending on the hardware being used, the instructor may wish to adjust this (at the top of the given code) so that the running time is significant but reasonable.

4.3.2 Sequential program

The initial sequential implementation creates a bitmap file (.bmp). In this type of file, an image is represented as a large array of pixel values. Each pixel is represented by a triple of bytes specifying how much blue, green, and red should appear in a given location. For example, a blue pixel could be represented by setting the blue value as high as possible (255) and setting the other values to 0. Colors other than blue, green, and red are represented as a combination of these three colors. For example, an orange color can be created by setting the red value to 255, the green value to 128, and the blue value to 0. The bulk of the mandelbrot program’s output is the contents of the array `pixels`, which stores these color values in structs of type `RGBTRIPLE`. Each struct has the color of a single pixel, represented with three fields `rgbtBlue`, `rgbtGreen`, and `rgbtRed` that store the values of its blue, green, and red components respectively. In this program, the only colors we use are black (all values 0) and white (all values 255).

In addition to the array of pixel values, the .bmp file format requires a header. Generating this header requires a significant amount of code, but it does not need to be modified so it can be treated as a “black box” during parallelization. When the author has used this example in lab, students have been content to ignore this code.

There are only two parts of the program that need to be examined or manipulated.
```c
for (int i = 0; i < numCols; i++) {
    for (int j = 0; j < numRows; j++) {
        x = ((double)i / numCols - 0.5) * 2;
        y = ((double)j / numRows - 0.5) * 2;
        color = mandelbrot(x, y); // returns 0 or 255
        pixels[i][j].rgbtBlue = color;
        pixels[i][j].rgbtGreen = color;
        pixels[i][j].rgbtRed = color;
    }
}
```

Figure (4.12) Nested loops to set pixel values

The first part is the pair of loops that we will be parallelizing, shown in Figure 4.12. These loops go through every pixel in the image, whose size is determined by `numCols=800` and `numRows=800`. For each pixel, it calls the function `mandelbrot` and uses the return value for all three color values for that pixel. Since the calculation for each pixel is independent, these loops are completely parallelizable.

The other part of the program relevant for parallelization is the `mandelbrot` function, which decides whether a given point \((x, y)\) is in the Mandelbrot set or not. It runs the algorithm described above for 1,000 iterations and uses a threshold of 2. (The value appears as 4 in the code because the other side of the inequality is the square of the magnitude.) The function then returns either 0 or 255 depending on whether the given point appears to be in the Mandelbrot set with these parameters, i.e. whether \(z_{1000} \leq 4\). Code for this method is shown in Figure 4.13.

4.3.3 Step by step parallelization with OpenMP

Now we are ready to begin the process of parallelizing this program. As described above, this intended as a discovery process, either during lecture or in a lab. Thus, our first attempt is incorrect and subsequent versions fix it and improve the performance.

In order to make the performance effects as visible as possible, we first set the environment variable `OMP_NUM_THREADS` to 2, which causes OpenMP to only use 2 threads. The
```c
int mandelbrot(double x, double y) {
    int maxIteration = 1000;  // # of iterations tested
    int iteration = 0;        // current iteration number
    double re = 0;            // current real part
    double im = 0;            // current imaginary part
    while ((re*re + im*im <= 4) && (iteration < maxIteration)) {
        double temp = re*re - im*im + x;
        im = 2*re*im + y;
        re = temp;
        iteration++;
    }
    if (iteration != maxIteration)
        return 255;  // didn't exceed threshold (yet) so (x,y) is in the set
    else return 0;  // exceeded threshold so (x,y) is outside set
}
```

Figure (4.13) Function `mandelbrot`, which tests for membership in the Mandelbrot set

command to do this varies with the shell being used, but the commands are

```
setenv OMP_NUM_THREADS 2
```

for csh or tcsh and

```
export OMP_NUM_THREADS=2
```

for bash.

Pragma on outer loop Since the main work is done in the nested pair of loops shown in Figure 4.12, we focus our parallelization efforts on them. We begin by adding a pragma to run the outer loop in parallel as follows:

```c
#pragma omp parallel for
for (int i = 0; i < numCols; i++) {
    for (int j = 0; j < numRows; j++) {
        // set pixel[i][j]
    }
}
```
After this change, the program does indeed run faster. Unfortunately, it also fails to generate the correct image. Figure 4.14 shows closeups of the versions generated by the original program and this version. The image generated by the parallel version appears somewhat grainy, with both white pixels inside the set and additional isolated dark ones outside it. (The Mandelbrot set is actually connected, but even the sequential version of our program draws some isolated black pixels since it generates a discrete version of the real set.) In addition, close examination reveals that the parallel version created some pixels with colors other than black and white.

The reason for these artifacts is that both threads created by the pragma are using the same copies of the variables \(x\), \(y\), and \texttt{color}. This causes them to sometimes use a value written by the other thread. Threads interfering with each other in this way is an example of a \textit{race condition}, a concurrency bug in which a bad interleaving of operations executed by different threads can give an incorrect result.

For example, if the first thread writes 255 in \texttt{color} but the second thread overwrites it with 0 before the first thread sets the pixel values, both threads will store 0 as the pixel values. This causes a pixel that should be white to become black. (The reverse can also happen.) A similar problem can result if the value of \(x\) or \(y\) are overwritten between when
they are set and when they are used to call the mandelbrot function. Note that these problems occur only when one of the shared variables is changed in the brief time between when it is set and when it is used, which is why most of the pixels have the correct color.

Fixing race condition. To fix the race condition, we simply want each thread to use its own copies of the variables x, y, and color. To indicate this, we add `private(x,y,color)` to the end of the pragma, giving the following:

```
#pragma omp parallel for private(x,y,color)
for (int i = 0; i < numCols; i++) {
    for (int j = 0; j < numRows; j++) {
        // set pixel[i][j]
    }
}
```

(In this case, the problem could also be solved by declaring these variables within the loop rather than outside; this is why there are no races on the variable j.) Adding the extra qualifier causes the indicated variables to be privatized, i.e. made private to each thread instead of shared by all of them.

After this change the parallel program produces the same image as the original sequential program. Dividing the sequential running time by the parallel running time gives 1.40. This value, called the speedup, means that the parallel program runs 1.40 times as fast as the sequential version. This is an improvement, but not very impressive. Because every pixel is independent, we would like to achieve something closer to linear speedup, speedup equal to the number of cores in use, i.e. 2 since we limited OpenMP to use 2 threads.

Swapping the loops. To try improving this, we consider an alternative. What happens if we swap the order of the loops? The resulting code is as follows:

```
#pragma omp parallel for private(x,y,color)
for (int j = 0; j < numRows; j++) {
    for (int i = 0; i < numCols; i++) {
        // set pixel[i][j]
    }
}
```
Figure (4.15) Two possible decompositions of the Mandelbrot set. Divides the columns into two parts (left) or the rows (right).

With this change, the speedup becomes 1.94, quite an improvement for such a minor change.

To understand the cause of this change, we have to examine the code of the `mandelbrot` function in Figure 4.13. Nearly all of this function’s running time is in the `while` loop. For points in the set (displayed as black in the output and for which the function returns 0), the loop executes 1,000 ($= \text{maxIteration}$) times. For points outside the set, the loop exits earlier. Thus, points that are black in the output take longer to process than points that become white.

Now consider how this relates to the change we made by swapping the loops. When the pragma is associated with the i loop, each thread was responsible for a share of the columns. When the loops were reordered, the pragma became associated with the j loop, making each thread responsible for a share of the rows. The two ways of decomposing the image are illustrated in Figure 4.15. As you can see, dividing the rows between threads results in each thread having the same number of black pixels.

Thus, the issue is load balance, how evenly the work is divided between the threads. If the work is split unevenly (poor load balance), some threads take longer than others. Since
the program does not complete until the last thread finishes, this makes the overall program slower. In our case, splitting the image by rows gives a better load balance than splitting by the columns, which explains why parallelizing the j loop gives a better speedup.

The reason for setting the environment variable `OMP_NUM_THREADS` was to better illustrate this effect. If the variable is not set, OpenMP uses as many threads as can run simultaneously on the hardware. In our case, sixteen threads are used and the resulting speedups are 5.32 when parallelizing the outer loop and 5.98 when parallelizing the inner loop. Swapping the loop order still improves load balance, but less dramatically since the parts are all smaller.

Pragma on inner loop. A different way to parallelize the j loop is to move the pragma into the outer loop body instead of swapping the loops. This gives the following:

```c
for (int i = 0; i < numCols; i++) {
    #pragma omp parallel for private(x,y,color)
    for (int j = 0; j < numRows; j++) {
        // set pixel[i][j]
    }
}
```

This change gives qualitatively different results depending on the system. The results stated thus far in this chapter are from a 16-core Linux system. On that system, this version of the code gives a speedup of 1.94, the same as the version with swapped loops. On our other system, a dual-core Mac, this version gave a speedup of 1.67, intermediate between the values achieved by the original parallel program (speedup 1.32) and the version with swapped loops (speedup 1.72). (Both systems are described in more detail in Section 4.1.)

Why do the systems give qualitatively different results and what could cause the intermediate speedup? We begin with the second question and explain the factors that can lead to an intermediate speedup. The version with a parallelized inner loop still has better load balance than the original parallel program; for each column, the work is split between two threads, with each processing the same number of black pixels. There are two reasons why the version with swapped loops may still be better. The first is that it requires fewer
instructions. When the inner loop is parallelized, the threads need to start, do their work, and then join each of the numRows times that the outer loop runs. Starting and joining the threads requires extra instructions that do not occur in the sequential version. This extra work is called overhead, instructions that are added as part of parallelizing a program. There is less overhead when the loop order is switched since the threads only start and join once.

A second reason why the swapped version may run faster than the version with a parallelized inner loop has to do with idle time introduced with each join of the threads. When the inner loop is parallelized, there is a join for each column. This means that whichever thread finishes its part of the column first will wait for the other thread before proceeding to the next column. If the threads take different amounts of time for their parts, this difference can accumulate even if the total load is balanced between the threads, as illustrated in Figure 4.16. These differences between thread completion times can occur even if the threads have an identical amount of work because the operating system might not give each of them the same share of the processor. Remember that the operating system is doing other things even if only a single program is running. Random differences in the running time of otherwise identical pieces of work are called jitter.

Given these two factors that tend to favor the version with loops swapped, why does parallelizing the inner loop give the same performance on the Linux system? It turns out that both of these factors are mitigated on that system. To test the overhead, we ran a program
that repeatedly created and joined threads with minimal workloads. Overhead caused the parallel version of this program to run slower than the serial version on both systems, but the slowdown was less on the Linux system, indicating lower overhead. (The exact cause is unclear, but the Linux system has newer hardware running a more recent operating system and a newer version of the compiler.) The expected effect of jitter is also reduced on the Linux system since it has many cores beyond the two needed for our threads, allowing it to run other things without interrupting our threads.

As a side note, the differences we observed between systems should impress upon the reader the need to test the module code on their system before using it in class. With OpenMP, this is particularly important because of the compiler’s increased role. For example, a more aggressive compiler might reorder the nested loops to improve cache performance and thus eliminate the programmer’s ability to try both orders.

Dynamic scheduling. The final step in our illustration of parallelizing the Mandelbrot program is actually an alternative to our manual adjustments to improve load balancing. The idea is to change how the loop iterations are distributed between the threads. Up to this point, all the variations implicitly use what is called *static scheduling*, meaning that the iterations assigned to each thread are determined before the loop begins. The alternative is *dynamic scheduling*, in which the iterations are broken into small groups that are then assigned to threads as the loop runs. This requires more coordination between the threads and the resulting overhead is why static scheduling is the default behavior. For our problem, however, dynamic scheduling improves the load balance by allowing a thread that runs faster iterations to do more of them than a thread that runs slower iterations.

To enable dynamic scheduling, we add `schedule(dynamic)` to the pragma as follows:

```c
#pragma omp parallel for private(x, y, color) schedule(dynamic)
for (int i = 0; i < numCols; i++) {
    for (int j = 0; j < numRows; j++) {
        // set pixel[i][j]
    }
}```
With this change, the program achieves a speedup of 1.94, equal to the best speedup previously achieved. The overhead of dynamic scheduling can hurt performance if the iterations are well balanced, but this example shows that it can be very effective when iterations require significantly different amounts of work; dynamic scheduling achieved the same performance without the previous efforts to hand-tune the load balance.

4.3.4 Parallelization using explicit threads

An alternative way to use the Mandelbrot module is to parallelize this program using pthreads, std::thread, or Java threads instead of OpenMP. Hand-written thread code can be used to demonstrate any of the concepts discussed in this section except for dynamic scheduling, which is more complicated to implement by hand. Both the OpenMP and explicit threading approaches have advantages. The advantage of OpenMP is that the ease of adding pragmas allows the four main versions of the parallel program (parallelizing i loop or j loop, swapping the loops or not) to be tested in a relatively short period of time. Implementing these four using explicit threading code would take significantly longer and have a much greater risk that bugs are introduced. Thus, the OpenMP approach is preferable for demonstrating the high-level concepts of load balance and parallel overhead. The disadvantage of using OpenMP instead of explicit threading code is the danger that students see it as “magic” that parallelizes their program without requiring an understanding of the underlying mechanism.

Because of the different advantages of each approach, the author advocates using both when teaching the Mandelbrot module. By the end of the module, the students have both written explicit threading code for a couple of the versions and used OpenMP to explore the entire space of possibilities. His inclination is to take a top-down approach by presenting the idea of threads, having students do the OpenMP version of the module for the high-level concepts, and then having them write explicit threading code. Other instructors could also use this material for a bottom-up approach in which students first write explicit threading
code and then move on to OpenMP.
REFERENCES


