NSF/TCPP CDER Telecon on Book Project

Sushil K Prasad, Georgia State University
Anshul Gupta, IBM T.J. Watson Research Center
Arnold Rosenberg – Northeastern University
Alan Sussman, University of Maryland
Chip Weems, University of Massachusetts
Agenda

• 5 min - Webinar logistics
• 5 min - CDER Center overview
• 15 min – To learn about early adopters' and other's experiences, their needs, current gaps
• 35-50 min - Discussion on book project, book's content
• 10 min – Solicitation for contributions to web resource
• 10 min - Follow up discussion on EduPar-13, improvements needed for EduPar-14
Webinar Logistics

• Use “raise hand” button to ask staff to speak.
• Submit questions for answer online or offline post telecon
• **Initiate chat**
 • To an individual, or
 • To all
Center for Parallel and Distributed Computing Curriculum Development and Educational Resources (CDER)

• Develop **PDC core curricula** flexible enough for a broad range of programs and institutions; collaborate with all stakeholders
 – Curriculum Site: http://www.cs.gsu.edu/~tcpp/curriculum

• Develop, collect, and synthesize **pedagogical and instructional materials** for teaching PDC curriculum topics*
 – Website [setup](http://www.cs.gsu.edu/~tcpp/curriculum)
 – Book Project

• Facilitate access to state-of-the-art **hardware and software resources** for PDC instruction and training by instructors and students*
 – Linux cluster access for instructor/student access
 – Access to GENI, XSEDE resources
 – Email me

• Organize Early Adopter Competitions and EduPar workshops, and related events*
 – Fall-13 early adopter competition – deadline June 30
 – Invitation for reviewers

* Call for participation and contribution
Your experience and current resources (15 min)

• What resources are you able to tap into?
 – Experiences teaching core courses with PDC topics
 – Textual and reference material employed,
 • Books/Chapters
 • Article/Essay
 • Lecture Module
 – Your needs, current gaps?

• What is missing in the PDC curriculum?

 ALGORITHMS
 Parallel and Distributed Models and Complexity
 Algorithmic Paradigms
 Divide & conquer (parallel aspects)
 Algorithmic problems

 ARCHITECTURE
 PROGRAMMING
 CROSS-CUTTING
CDER Book Project
(40-50 min)

• Lack of suitable textbooks to integrate PDC topics into the core courses
 – CS1, CS2, Systems, and Data Structures and Algorithms

• Part I - For instructors: Basic Concepts and References on what and how to teach
 • Sample essays on Asymptotics, Scalability, and Synchronization posted; A few on Parallel Time, Pipelining, Shared Memory Programming underway

• Part 2: For students: Supplemental teaching material for core courses
CDER Book Project

• Part 1: For Instructors
 – *Definitions/Concept*
 – *Illustrate pitfalls/limitations*
 – *Where it could be covered? Along with which topics?*
 – *What are good examples to employ in CS0, CS1, CS2, DS/A, etc.*

• The book may have progressively sophisticated treatment, allowing instructors to cover a subset of initial subsections as appropriate for each course.
 – For example, 4.1 in CS1, 4.1,4.2 in CS2, 4.3 and 4.4. in DS/A, etc.
 – May not have to worry too much in terms of difficulty of sections.
 – It is better to cover in more depth, than to leave out a topic.

• Identify how PDC concepts reoccur across topics/courses

• The section/chapters will be more or less complete treatment of chosen topic/problem/example.
CDER Book Project

• Part 2: For students
 – Supplemental textual material for core courses
 • textbook supplement
 • portions of custom textbook
 • authors can draw upon for their own writings
 – Students should be able to rely on this writeup for learning, exercises, ...
 – This would be unique material
 • which cannot be readily found elsewhere (current texts, slides, web, etc.)

• Discussion on book’s content
• Other ideas?
Submit proposals ½ - 1 page – deadline **June 28**

- Context: PDC topic hierarchy
- Part 1: For instructors
 - Cohesiveness an important goal
 - Independent essays welcome
- Part 2: For students
- Collaborative teams possible
 - Post-proposal team may also be formed
- Readable, complete, usable, adaptable, not a information dump

- Proposal Review – notification deadline **July 15**
- Submit sections/essays/parts/chapters – deadline **Aug 22**
- Q&A
Solicitation for Contribution to CDER Courseware Website

Upload and Search Course Material

• **Type:**
 – Slides, Syllabus, Tutorial, Video
 – Animation, Article, Award, Blog, Book, Competition
 – Course Template, Course Module, Data
 – Hardware Access, Software/Tools
 – Proposal, Report

• **Courses:**
 – CS1, CS2, Systems, Data Structures and Algorithms, ...

• **NSF/TCPP Topic/Subtopic Classification:**

 ALGORITHMS
 – Parallel and Distributed Models and Complexity
 – Algorithmic Paradigms
 – Divide & conquer (parallel aspects)
 – Algorithmic problems

 ARCHITECTURE
 PROGRAMMING
 CROSS-CUTTING
Early Adopter Program

• Total 80 institutions worldwide
 – Spring-11: 16 institutions; Fall’11: 18;
 – Spring-12: 21; Fall-12: 25 institutions
 – Most from US (4 year to research institutions);
 • some from South America, A few from Europe, fewer from Asia (India, China).

• Fall-13 round of competition: Deadline June 30, 2013
 – NSF/Intel funded cash awards ranging from $1k-2.5K + certificate
 – *Which course(s), topics, evaluation plan?*

• Instructors for core CS/CE courses such as CS1/2, Systems, Data Structures and Algorithms – department-wide multi-course multi-semester adoption preferred
 – Elective courses; graduate courses,
 – Computational Science, computational courses of STEM disciplines
Follow up discussion on EduPar-13, improvements needed for EduPar-14

• What worked
• What did not work
• 2 day workshop?