Exposing Undergraduates to Parallel Performance Concepts with a Three-Module Sequence

Apan Qasem
Texas State University
San Marcos, TX
Texas State University

- Current enrollment ~35000
- Student body reflects area demographic
 - 28% of students are of Hispanic origin
- Student body includes
 - commuters, veterans, non-traditional
- Departmental faculty
 - 28 TTF and Lecturer
 - 8-10 “rotating” adjuncts
- Class sizes relatively
 - CS I class has 16 sections + labs
The Three-Module Sequence

Module 1: Elementary Concepts

Module 2: Task Orchestration

Module 3: Analysis and Evaluation
Module Features

- Modules meant to complement an existing parallel programming course in the curriculum
- Little or no parallel programming involved
- Self-contained
 - Example codes
 - Tools for running experiments
Elementary Concepts

- **Topics**
 - Concurrency, parallelism, scalability
 - Efficiency, Speedup
 - Amdahl’s Law
 - Differences in sequential and parallel architectures (very high-level)

- **Course**
 - CS I (CS1428 at Texas State, Honors-only section)

- **In-class time**: 1 lecture,
- **Out-of class time**: ~3-4 hours
- **Context**: follows lecture on sorting algorithms (week 11)
- **Evaluation**:
 - Exam question
Task Orchestration

- **Topics**
 - Tasks, threads, concurrency, parallelism
 - Data dependence, race condition, process synchronization
 - Load balancing
 - Scheduling and mapping
 - Communication vs. computation trade-off

- **Course**:
 - Operating Systems (CS4328 at Texas State)

- **Context**:
 - OS scheduling algorithms

- **In-class time**: 1.5 lectures

- **Evaluation**:
 - Exam question
Evaluation and Analysis

- **Topics**
 - Efficiency, Speedup, super-linear speedup
 - Data locality
 - Latency, bandwidth
 - Parallel benchmarks and performance tools

- **Course:**
 - Computer Architecture (CS3339 at Texas State)

- **In-class time:** 1.5 lectures
- **Out-of class time:**

- **Context:**
 - split into two parts: week 2 (intro) and week 12 (after parallel architecture)

- **Evaluation:**
 - project involving performance evaluation on a parallel system
Learning Outcome Evaluation

CS I

Operating Systems

Computer Architecture

Overall passing rate 72%

About 7% higher than average passing rate in these courses

Some concerns with specific implementations
Challenges

• **Which course is the best fit for a module?**
 • Identify context
 • thread scheduling and task orchestration in OS
 • emphasis of P&H text on performance evaluation

• **How much time to devote to a module?**
 • Keep it short
 • Strip away content to get it down to one lecture

• **When in the semester should the module be introduced?**
 • Later is better
 • in-course pre-requisites
Tackling the Challenges

• **What content should be removed or condensed?**
 • Use ACM 2013 to de-emphasize content
 • reduced focus on AR topics
 • Look for redundancy
 • number representation and conversion

• **How to engage in-experienced/disinterested instructors?**
 • In-experience addressed with training
Thank you!