Introducing Parallel Computing in Undergraduate Curriculum

Cordelia M. Brown, Yung-Hsiang Lu, Samuel Midkiff
Electrical and Computer Engineering, Purdue University

Curriculum Change, not a New Course
- Students learn different aspects of parallel computing in many courses across four years
- The changes are integrated into the existing curriculum.
- **Steps:**
 - Identify which courses to change
 - Determine the orders of the changes
 - Eliminate duplicates and unnecessary contents
 - Change the course requirements (ABET)
 - Implement and integrate changes

Observations and Discussion
- Students are eager to learn parallel computing. Most students already know processors have multiple cores.
- Students can understand important concepts through examples in everyday life:
 - Washer-dryer as an example of pipeline
 - Simultaneous withdrawal from ATM motives the needs for mutual exclusion and synchronization
 - Traffic lights regulate the access of exclusive resources (the intersection of streets).

Evaluation (Data Will be Available Later)
- Will present the data from Spring 2013

- Understanding of Amdahl's Law
- Understanding of Different Parallel Computing Paradigm
- Understanding of the Need for Mutual Exclusion
- Performance Scaling
- Image Inversion
- Subset Sum

The numbers mean the years when students take the courses.

Orders of Changes
- **Object-Oriented Programming** (Java Thread, QThread, Synchronization)
 ⇒ Introduction + Digital Logic (Carry Look-Ahead)
 ⇒ Microcontroller (Interrupts, Hardware Description Language)
 + Computer Architecture (Pipeline, Multiple Cores, Cache Coherence)
 ⇒ C Programming (Pthread, Pipeline, Mutual Exclusion, Amdahl's Law)

This project was supported in part by NSF CNS 0722212. Any opinions, findings, and conclusions or recommendations expressed in this poster are those of the authors and do not necessarily reflect the view of the National Science Foundation.