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Abstract:  

 

This report is a revised version of our preliminary report that was released in Dec 2010. The report contains the core topics in parallel 

and distributed computing (PDC) that a student graduating with a Bachelor’s degree in Computer Science or Computer Engineering is 

expected to have covered. The topics are organized into four areas of architecture, programming, algorithms, and cross-cutting and 

advanced topics. Additional elective topics are expected. This report is expected to engage the various stakeholders for their adoption 

and others usage as well as their feedback to periodically update the proposed curriculum. This document contains an introductory 

write up on curriculum’s need and rationale, followed by the proposed topics, with specified Bloom level of coverage, learning 

outcomes, and suggested number of hours and relevant courses, and additional material in the appendices on suggestions on how to 

teach individual topics, a cross-reference matrix on core courses vs. topics, and a sample elective course.  The revision has updated all 

the sections, with a new section on rationale for cross cutting topics, reorganization of the programming topics, and updates to several 

learning outcomes, expected number of hours, and the appendix on how to teach.  The scribes of the revised version were Anshul 

Gupta, Krishna Kant (co-coordinator: crosscutting topics), Andrew Lumsdaine (co-coordinator: crosscutting topics), David Padua (co-

coordinator: programming), Sushil Prasad, Yves Robert, Arnold Rosenberg (coordinator: algorithms), Alan Sussman (co-coordinator: 

programming) and Chip Weems (coordinator: architecture). 

        

Since the release of the preliminary version, we have selected about 80 early adopters from U.S. and from across the world in order to 

get its evaluation and to obtain templates on how these topics can be adopted in various courses across the curriculum.  The early 

adopters have been awarded stipends, equipment, and travel support through four rounds of competitions (Spring and Fall of 2011 and 

2012) with support from NSF, Intel, and nVIDIA. Additional competitions are planned for Fall 2013 and Fall 2014 with proposal 

deadlines in preceding June.  These early adopters and the community meet annually at EduPar workshop held at IPDPS conference to 

provide feedback and discuss state of art in PDC education.  In Fall 2012, NSF supported creating a Center for Parallel and Distributed 

Computing Curriculum Development and Educational Resources (CDER) for long-term sustenance of this initiative.  CEDR center 

will coordinate the ongoing activities including periodic curricular updates as well as become a hub for collection and creation of 

educational resources and will facilitate access to hardware and software resources for instruction.   
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1. Introduction 

 
Parallel and Distributed Computing (PDC) now permeates most computing activities - the “explicit” ones, in which a person works 

explicitly on programming a computing device, and the “implicit” ones, in which a person uses everyday tools such as word 

processors and browsers that incorporate PDC below the user’s visibility threshold.  The penetration of PDC into the daily lives of 

both “explicit” and “implicit” users has made it imperative that users be able to depend on the effectiveness, efficiency, and reliability 

of this technology.  The increasing presence of computing devices that contain multiple cores and general-purpose graphics processing 

units (GPUs) in PCs, laptops, and now even handhelds has empowered even common users to make valued, innovative contributions to 

the technology of computing.  Certainly, it is no longer sufficient for even basic programmers to acquire only the traditional, 

conventional sequential programming skills.  The preceding trends point to the need for imparting a broad-based skill set in PDC 

technology at various levels in the educational fabric woven by Computer Science (CS) and Computer Engineering (CE) programs as 

well as related computational disciplines.  However, the rapid change in computing hardware platforms and devices, languages, 

supporting programming environments, and research advances, more than ever challenge educators in knowing what to teach in any 

given semester in a student’s program. Students and their employers face similar challenges regarding what constitutes basic expertise. 

 

Our vision for our committee is one of stakeholder experts working together and periodically providing guidance on restructuring 

standard curricula across various courses and modules related to parallel and distributed computing. A primary benefit would be for 

CS/CE students and their instructors to receive periodic guidelines that identify aspects of PDC that are important to cover, and 

suggested specific core courses in which their coverage might find an appropriate context. New programs at colleges (nationally and 

internationally) will receive guidance in setting up courses and/or integrating parallelism within the Computer Science, Computer 

Engineering, or Computational Science curriculum. Employers would have a better sense of what they can expect from students in the 

area of parallel and distributed computing skills. Curriculum guidelines will similarly help inform retraining and certification for 

existing professionals. 

 

As background preparation for the development of this curriculum proposal, a planning workshop funded by the National Science 

Foundation (NSF) was held in February, 2010, in Washington, DC; this was followed up by a second workshop in Atlanta, alongside 

the IPDPS (International Parallel and Distributed Processing Symposium) conference in April, 2010.  These meetings were devoted to 

exploring the state of existing curricula relating to PDC, assessing needs, and recommending an action plan and mechanisms for 

addressing the curricular needs in the short and long terms. The planning workshops and their related activities benefited from experts 

from various stakeholders, including instructors, authors, industry, professional societies, NSF, and the ACM education council.  The 

primary task identified was to propose a set of core topics in parallel and distributed computing for undergraduate curricula for CS and 

CE students. Further, it was recognized that, in order to make a timely impact, a sustained effort was warranted. Therefore, a series of 

weekly/biweekly tele-meetings was begun in May, 2010; the series continued through December, 2010.  
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The goal of the series of meetings was to propose a PDC core curriculum for CS/CE undergraduates, with the premise that every 

CS/CE undergraduate should achieve a specified skill level regarding PDC-related topics as a result of required coursework. One 

impact of a goal of universal competence is that many topics that experts in PDC might consider essential are actually too advanced 

for inclusion. Early on, our working group’s participants realized that the set of PDC-related topics that can be designated core in the 

CS/CE curriculum across a broad range of CS/CE departments is actually quite small, and that any recommendations for inclusion of 

required topics on PDC would have to be limited to the first two years of coursework. Beyond that point, CS/CE departments 

generally have diverse requirements and electives, making it quite difficult to mandate universal coverage in any specific area.  

Recognizing this, we have gone beyond the core curriculum, identifying a number of topics that could be included in advanced and/or 

elective curricular offerings. 

 

In addition, we recognized that whenever it is proposed that new topics be included in the curriculum, many people automatically 

assume that something else will need to be taken out. However, for many of the topics we propose, this is not the case. Rather, it is 

more a matter of changing the approach of teaching traditional topics to encompass the opportunities for “thinking in parallel.” For 

example, when teaching array-search algorithms, it is quite easy to point to places where independent operations could take place in 

parallel, so that the student's concept of search is opened to that possibility. In a few cases, we are indeed proposing material that will 

require making choices about what it will replace in existing courses. But because we only suggest potential places in a curriculum 

where topics can be added, we leave it to individual departments and instructors to decide whether and how coverage of parallelism 

may displace something else. The resulting reevaluation is an opportunity to review traditional topics, and perhaps shift them to a 

place of historical significance or promote them to more advanced courses.  

 

A preliminary version of the proposed core curriculum was released in December 2010. We sought early adopters of the curriculum 

for spring and fall terms of 2011 and 2012 in order to get a preliminary evaluation of our proposal.  These adopters included: (i) 

instructors of introductory courses in Parallel and Distributed Computing, (ii) instructors, department chairs, and members of 

department curriculum committees, who are responsible for core CS/CE courses, and (iii) instructors of general CS/CE core 

curriculum courses. The proposing instructors are employing and evaluating the proposed curriculum in their courses. 16 institutions 

were selected and awarded stipend with NSF and Intel support during Spring’11. We organized a follow-up curriculum and education 

workshop (EduPar-11 at IPDPS, May 16-20, Anchorage) to bring together early adopters and other experts, and collect feedback from 

the early adopters and the community.  For Fall’11, Spring’12 and Fall’12 rounds of competitions, 18, 21, and 24 early adopters, 

respectively, were selected. EduPar-12 workshop was held as a regular IPDPS’12 satellite workshop, in Shanghai in May 2012, with 

expanded scope, and EduPar-13 is being organized at IPDPS-13 in Boston. 

 

This document is a revised version of the preliminary report based on interactions with the early adopters and varied stakeholders at 

EduPar-11 workshop, bi-weekly tele-meetings from August of 2011 through April of 2012, interactions at EduPar-12, and the follow-

up CEDR meetings during Fall 2012.  In the three main PDC sub-areas of Architecture, Programming, and Algorithms, plus a fourth 

sub-area composed of Cross-cutting or Advanced Issues, the working group has deliberated upon various topics and subtopics and 
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their level of coverage, has identified where in current core courses these could be introduced (Appendix I), and has provided 

examples of how they might be taught (Appendix II). For each topic/subtopic, the process involved the following. 

 

1.  Assign a learning level using Bloom’s classification
2
 using the following notation.

3
 

K= Know the term (basic literacy)  

C = Comprehend so as to paraphrase/illustrate 

A = Apply it in some way (requires operational command) 

2. Write learning outcomes. 

3. Identify core CS/CE courses where the topic could be covered. 

4. Create an illustrative teaching example. 

5. Estimate the number of hours needed for coverage based on the illustrative example. 

  

 

Our larger vision in proposing this curriculum is to enable students to be fully prepared for their future careers in light of the 

technological shifts and mass marketing of parallelism through multicores, GPUs, and corresponding software environments, and to 

make a real impact with respect to all of the stakeholders for PDC, including employers, authors, and educators. This curricular 

guidance and its trajectory, along with periodic feedback and other evaluation data on its adoption and use, will also help to steer 

companies hiring students and interns, hardware and software vendors, and, of course, authors, instructors, and researchers.   

 

The time is ripe for parallel and distributed computing curriculum standards, but we also recognize that any revision of a core 

curriculum is a long-term community effort.  The CS2013 ACM/IEEE Computer Science Curriculum Joint Task Force has recognized 

PDC (along with security) as a main thrust area. We are closely interacting with the Task Force, providing expert feedback on the 

PDC portion of their initial draft on PDC in Oct, 2011. We will continue to engage with this and other education-oriented task forces 

in the hope of having significant impact on the CS/CE academic community.  More details and workshop proceedings are available at 

the Curriculum Initiative’s website: http://www.cs.gsu.edu/~tcpp/curriculum/index.php (email contact: sprasad@gsu.edu). 

 

The rest of this document is organized as follows. First, we provide a general rationale for developing a PDC curriculum (Section 2). 

We then address the question of whether there is a core set of topics that every student should know. The initial overview concludes 

with an explanation of how to read the curriculum proposal in a manner consistent with its underlying intent (Section 3).  Sections 4, 

                                                 
2
 (i) Anderson, L.W., & Krathwohl (Eds.). (2001). A Taxonomy for Learning, Teaching, and Assessing: A Revision of Bloom's 

Taxonomy of Educational Objectives. New York: Longman, (ii) Huitt, W. (2009). Bloom et al.'s taxonomy of the cognitive domain. 

Educational Psychology Interactive. Valdosta, GA: Valdosta State University. 

http://www.edpsycinteractive.org/topics/cogsys/bloom.html. 
3
 Some advanced topics are identified as “N” as being “not in core” but which may included in an elective course. 
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5, 6, and 7 then continues with a rationale for each of the four major topic areas in the proposal: architecture, programming, 

algorithms, and cross-cutting.  The proposed curriculum appears in Section 8.   For the benefit of potential instructors, Appendix I 

contains a cross-reference matrix indicating topics for each core course.   Appendix II contains suggestions for how to teach individual 

topics.  Finally, Appendix III contains a sample syllabus for an introductory course on parallel and distributed computing.  Additional 

sample courses will be collected at the curriculum website. 

 

2. Why a Parallel and Distributed Computing Curriculum? 

2.1 A short history of computing 

 

In the beginning, there was the von Neumann architecture. The first digital computers comprised a functional unit (the processor) that 

communicated with a memory unit.  Humans interfaced with a computer using highly artificial “languages.”  Humans seldom 

interfaced with more than one computer at a time, and computers never interfaced with one another.  Much of the evolution of digital 

computers in the roughly seven decades of their existence has brought technical improvements: functional units and memories have 

become dramatically faster; languages have become dramatically more congenial to the human user.  In the earliest days, it seemed as 

though one could speed up digital computers almost without limit by improving technology: in rapid succession, vacuum tubes gave 

way to solid-state devices, and these were in turn replaced by integrated circuits --- notably, by using Very Large Scale Integrated 

Circuit Technology (VLSI).  One could speed up VLSI circuits impressively by shrinking “feature sizes” within the circuits and by 

increasing clock rates.  Despite these impressive improvements, one could see hints of “handwriting on the wall”: The fastest 

integrated circuits were “hot,” presaging that power-related issues (e.g., heat dissipation) would become significant before too long; 

shrinking feature sizes would ultimately run up against the immutable sizes of atoms.  As early as the 1960s, visionaries working 

along one branch of digital computers’ evolutionary tree began envisioning an alternative road toward faster digital computers --- the 

replication of computer components and the development of tools that allowed multiple components to cooperate in the activity of 

what came to be called digital computing. 

 

The first digital computers that deviated from the von Neumann architecture can be viewed as hydras (in analogy with the mythical 

beast): they were essentially von-Neumann-esque computers that had multiple processors.  This development enabled faster 

computing - several instructions could be executed simultaneously - but they also forced the human user (by now called the 

programmer) to pay attention to coordination among the processors. 

 

An important offspring of the hydra-like shared-memory computers had multiple memory boxes in addition to multiple processors.  

For efficiency, certain processors had preferential (in terms of speed) access to certain memory boxes - which introduced locality to 

the growing list of concerns the programmer had to deal with.  Additionally, since each processor-memory box pair could function as 

an independent von Neumann computer, the programmer now had to orchestrate communication among the computers - which 

“talked” to one another across an interconnection network. 
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It was a short conceptual leap from the preceding “multiple computers in a box” computing platform to clusters whose computers 

resided “close” to one another and intercommunicated over a local area network (LAN).  Among the added concerns arising from the 

evolution of clusters was the need to account for the greater variability in the latency of inter-computer communications.  So-called 

“parallel” computing was beginning to sport many of the characteristics of distributed computing, wherein computers share no 

physical proximity at all. 

 

Perhaps the ultimate step in this evolution has been the development, under a variety of names, of Internet-based collaborative 

computing, wherein geographically dispersed (multi-)computers intercommunicate over the Internet in order to cooperatively solve 

individual computing problems.  Issues such as trust and temporal predictability now join the panoply of other concerns that a 

programmer must deal with. 

 

Into all of these advances, architects have mixed detailed technical concepts such as multithreading, pipelining, superscalar issue, and 

short-vector instructions. All of this heterogeneous parallelism is now wrapped into commonly encountered computing platforms - in 

addition to the growing use of vector-threaded co-processors for graphics and scientific computing. 

 

Programming languages have tended to follow an evolutionary path not unlike that of hardware. There have been many attempts to 

create languages that support abstract models of parallelism, or that correlate with specific parallel architectures, but most have met 

with only limited success. Even so, popular languages have gradually moved to incorporate parallelism, and languages that focus on 

various modalities of parallelism have gained a modicum of popularity, so that today it is difficult to ignore parallel computing in even 

the core of a CS or CE undergraduate programming curriculum.  Indeed, we propose that it is a disservice to students not to build a 

substantial dose of parallel computing into this core. 

 

In the past, it was possible to relegate issues regarding parallelism - such as coordination and locality - to advanced courses that treat 

subjects such as operating systems, databases, and high performance computing: the issues could safely be ignored in the first years of 

a computing curriculum. But current-day changes in architecture are driving advances in languages that necessitate new problem 

solving skills and knowledge of parallel and distributed processing algorithms at even the earliest stages of an undergraduate career.  

This work is our response to these changes. 

 

2.2 What should every (computer science/engineering) student know about computing? 

 

It has been decades since it was “easy” to supply undergraduates with everything that they need to know about computing as they 

venture forth into the workforce. This challenge has become ever more daunting with each successive stage of the evolution described 
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in the preceding section.  In addition to enabling undergraduates to understand the fundamentals of “von Neumann computing,” we 

must now prepare them for the very dynamic world of parallel and distributed computing.   

 

This curriculum proposal seeks to address this challenge in a manner that is flexible and broad, always allowing for local variations in 

emphasis. The field of PDC is changing too rapidly for any proposal with any rigidity to remain valuable to the community for a 

useful length of time. But it is essential that curricula begin the process of incorporating parallel thinking into the core courses. Thus, 

the proposal attempts to identify basic concepts and learning goals that are likely to retain their relevance for the foreseeable future.  

 

We see PDC topics as being most appropriately sprinkled throughout a CS/CE curriculum in a way that enhances what is already 

taught and that melds parallel and distributed computing with existing material in whatever ways are most natural for a given 

institution/program. While advocating the thesis that relegating PDC subjects to a separate course is not the best means to shift the 

mindset of students away from purely sequential thinking, we recognize that the separate-course route may work better for some 

programs.  

 

 

3. How to Read this Proposal 

 
The reader of this proposal should keep in mind that many of the topics we discuss can appear at multiple levels in the broader 

curriculum. Upon seeing a topic, the reader should not make a premature judgment regarding its suitability for an undergraduate 

course. Rather, the reader should consider where and how aspects of the topic might naturally be blended into a suitable context to 

facilitate the move to holistically allowing students to develop a capacity for parallel and distributed thinking.   

 

For each of the topics, we suggest where and how it can be covered in a curriculum.  We thus provide suggestions and examples rather 

than prescriptions: We are not saying that this is the preferred form of coverage. Our goal is to illustrate one possibility and to get the 

reader thinking about alternate possibilities.  

 

Our curricular guidelines are not meant to specify precisely where each item is addressed. Our intention is, rather, to encourage 

instructors to find as many ways as appropriate to insert coverage of the indicated PDC topics into core courses. Even side comments 

of a few sentences about how some topic under discussion takes on a new perspective in a parallel or distributed context when 

judiciously sprinkled throughout a course will help students to expand their thinking. Students will more naturally start to think in 

parallel and distributed terms when they sense that their instructors are always conscious of the implications of parallelism and 

distributed computing with respect to each topic that is covered in their courses - even topics that have no obvious parallel or 

distributed content. 
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This curriculum guide should thus be taken as a basic list of those topics associated with parallel and distribute computing to be kept 

in mind in the teaching of computer science and engineering. They form a fundamental set of concepts that all students should be 

familiar with, through seeing them in multiple contexts and at differing levels of sophistication during their academic careers.  

 

In the next four sections we present rationales for the four areas of computer science and engineering into which we have divided the 

learning goals of the proposed curriculum: Architecture, Programming, Algorithms, and Crosscutting Topics. 

 

 

4. Rationale for Architecture Topics 

 
Existing computer science and engineering curricula generally include the topic of computer architecture. Coverage may range from a 

required course to a distributed set of concepts that are addressed across multiple courses.  

 

As an example of the latter, consider an early programming course where the instructor introduces parameter passing by explaining 

that computer memory is divided into cells, each with a unique address. The instructor could then go on to show how indirect 

addressing uses the value stored in one such cell as the address from which to fetch a value for use in a computation. There are many 

concepts from computer architecture bound up in this explanation of a programming language construct.  

 

While the recommended topics of parallel architecture could be gathered into an upper level course and given explicit treatment, they 

can be similarly interwoven in lower-level courses. Because multicore, multithreaded designs with vector extensions are now 

mainstream, more languages and algorithms are moving to support data and thread parallelism. Thus, students are going to naturally 

start bumping into parallel architecture concepts earlier in their core courses.  

 

Similarly, with their experience of social networking, cloud computing, and ubiquitous access to the Internet, students are familiar 

users of distributed computation, and so it is natural for them to want to understand how architecture supports these applications. 

Opportunities arise at many points, even in discussing remote access to departmental servers for homework, to drop in remarks that 

open student's eyes with respect to hardware support for distributed computing.  

 

Introducing parallel and distributed architecture into the undergraduate curriculum goes hand in hand with adding topics in 

programming and algorithms. Because practical languages and algorithms bear a relationship to what happens in hardware, explaining 

the reasoning behind a language construct, or why one algorithmic approach is chosen over another will involve a connection with 

architecture. 
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A shift to "thinking in parallel" is often cited as a prerequisite for the transition to widespread use of parallelism. The architecture 

curriculum described here anticipates that this shift will be holistic in nature, and that many of the fundamental concepts of parallelism 

and distribution will be interwoven among traditional topics.  

 

There are many architecture topics that could be included, but the goal is to identify those that most directly impact and inform 

undergraduates, and which are well established and likely to remain significant over time. For example, GPGPUs are a current hot 

topic, but even if they lose favor, the underlying mechanisms of multithreading and vector parallelism have been with us for over four 

decades, and will remain significant because they arise from fundamental issues of hardware construction.  

 

The proposal divides architecture topics into four major areas: Classes of architecture, memory hierarchy, floating-point 

representation, and performance metrics. It is assumed that floating point representation is already covered in the standard curriculum, 

and so it has been included here merely to underscore that for high performance parallel computing, where issues of precision, error, 

and round off are amplified by the scale of the problems being solved, it is important for students to appreciate the limitations of the 

representation. 

 

Architecture Classes topics are meant to encourage coverage of the major ways in which computation can be carried out in parallel by 

hardware. Understanding the differences is key to appreciating why different algorithmic and programming paradigms are needed to 

effectively use different parallel architectures. The classes are organized along two dimensions: control vs. data parallelism, and the 

degree to which memory is partitioned.  

 

Memory Hierarchy is covered in the traditional curriculum, but when parallelism and distribution come into play, the issues of 

atomicity, consistency, and coherence affect the programming paradigm, where they appear, for example, in the explanation of thread 

safe libraries.  

 

Performance Metrics present unique challenges in the presence of PDC because of asynchrony that results in unrepeatable behavior. 

In particular, it is much harder to approach peak performance of PDC systems than for serial architectures.  

 

Many of the architecture learning goals are listed as belonging to an architecture course. The teaching examples, however, describe 

ways that they can be introduced in lower level courses. Some topics are indicated as belonging to a second course in architecture or 

other advanced courses. These are not included in the core curriculum. We have merely included them as guidance for topical 

coverage in electives, should a department offer such courses.  
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5. Rationale for Programming Topics 

 
The material is organized into three subtopics: Paradigms and notations, correctness, and performance. We discuss these in separate 

sections below. A prerequisite for coverage of much of this material is some background in conventional programming. Even though 

we advocate earlier introduction of parallelism in a student's programming experience, basic algorithmic problem solving skills must 

still be developed, and we recognize that it may be easier to begin with sequential models. Coverage of parallel algorithms prior to this 

material would allow the focus to be exclusively on the practical aspects of parallel programming, but they can also be covered at the 

same time as necessary and appropriate. 

Paradigms and Notations:  There are different approaches to parallel programming. These can be classified in many different ways. 

Here we have used two different ways of classifying the models. First, we classify the paradigms by the target machine model: SIMD 

(single instruction multiple data) is the paradigm in which the parallelism is confined to operations on (corresponding) elements of 

arrays. This linguistic paradigm is at the basis of Streaming SIMD Extension (SSE) or Altivec macros, some database operations, 

some operations in data structure libraries, and the languages constructs used for vector machines. Shared-memory is the paradigm of 

OpenMP and Intel’s Thread Building Blocks, among other examples.  Distributed memory is the paradigm underlying message 

passing and the MPI standard. A hybrid model is when any of the previous three paradigms co-exist in a single program. The logical 

target machine does not have to be identical to the physical machine. For example, a program written according to the distributed 

memory paradigm can be executed on a shared-memory machine and programs written in the shared-memory paradigm can be 

executed on a distributed memory machine with appropriate software support (e.g., Intel’s Cluster OpenMP).  A second way to 

classify programming approaches is according to the mechanisms that control parallelism. These are (mostly) orthogonal to the first 

classification. For example, programs in the SPMD (single program multiple data) paradigm can follow a distributed-memory, shared-

memory and even the SIMD model from the first classification. The same is true of programs following the data parallel model. The 

task spawning model can work within a distributed or shared-memory paradigm. The parallel loop form seems to be mainly used with 

the shared-memory paradigm, but High-Performance Fortran merged the loop model with the distributed memory paradigm. The 

students are expected to be familiar with several notations (not languages since in many cases support comes from libraries such as 

MPI and BSPlib). Not all notations need to be covered, but at least one per main paradigm should be. An example collection that 

provides this coverage would be Java threads, SSE macros, OpenMP, and MPI. Parallel functional languages are optional. 

Correctness and semantics: This set of topics presents the material needed to understand the behavior of parallel programs other than 

the fact that there are activities that take place (or could take place) simultaneously. Material covers:   

a. Tasking, including ways to create parallel tasks and the relationship between implicit tasking and explicit tasking (e.g., 

OpenMP vs. POSIX threads).  

b. Synchronization, including critical sections and producer consumer relations. 
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c. Memory models. This is an extensive topic and several programming languages have their own model. Only the basic ideas 

are expected to be covered. 

d. Concurrency defects and tools to detect them (e.g. Intel’s thread checker). 

 

Performance:  The final group of topics is about performance - how to organize the computation and the data for the different classes 

of machines. The topics here are self-explanatory. 

 

6. Rationale for Algorithms Topics 

 
Parallel/Distributed Models and Complexity:  It is essential to provide students a firm background in the conceptual underpinnings of 

parallel and distributed computing (PDC). Not only is parallelism becoming pervasive in computing, but also technology is changing 

in this dynamic field at a rapid pace. Students whose education is tied too closely to existing - hence, obsolescent - technology will be 

at a disadvantage.  

 

Paradigm shifts in the computing field are not new. To recapitulate just a few instances from the Introduction: (1) The VLSI 

revolution of the late 1970s and early 1980s allowed the development of computers with unheard-of levels of parallelism. New 

problems related to interprocessor communication arose, exposing an aspect of parallel computing that could safely be ignored when 

levels of parallelism were very modest. (2) As clusters of modest processors (or, workstations) joined “multiprocessors-in-a-box” as 

parallel computing platforms in the early 1990s, two sea changes occurred: (a) computing platforms became heterogeneous for the 

first time, and (b) communication delays became impossible to hide via clever latency-hiding strategies. (3) As computational grids 

became “parallel” computing platforms around the turn of the millennium, the distinction between parallel and distributed computing 

became fuzzier than ever before. 

 

Fortunately, in spite of the “leaps and bounds” evolution of parallel computing technology, there exists a core of fundamental 

algorithmic principles. Many of these principles are largely independent of the details of the underlying platform architecture, and they 

provide the basis for developing applications on current and (foreseeable) future parallel platforms. Students should be taught how to 

identify and synthesize fundamental ideas and generally applicable algorithmic principles out of the mass of parallel algorithm 

expertise and practical implementations developed over the last few decades. 

 

What, however, should be taught under the rubric “conceptual underpinnings of parallel and distributed computing?” Our choices 

reflect a combination of “persistent truths” and “conceptual flexibility.” In the former camp, one strives to impart: (1) an 

understanding of how one reasons rigorously about the expenditure of computational resources; (2) an appreciation of fundamental 

computational limitations that transcend details of particular models. In the latter camp, one needs to expose the student to a variety of 
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“situation-specific” models, with the hope of endowing the student with the ability to generate new models in response to new 

technologies. 

 

Algorithmic Paradigms:  This section acknowledges the folk wisdom that contrasts giving a person a fish and teaching a student how 

to fish. Algorithmic paradigms lie in the latter camp. We have attempted to enumerate a variety of paradigms whose algorithmic utility 

has been demonstrated over the course of decades. In some sense, one can view these paradigms as algorithmic analogues of high-

level programming languages. The paradigms in our list can be viewed as generating control structures that are readily ported onto a 

broad range of parallel and distributed computing platforms. Included here are: the well-known divide-and-conquer paradigm that is 

as useful in the world of sequential computing as in the world of parallel and distributed computing (where it is the basis for the 

expansive-reductive, or “MapReduce” computations); the series-parallel paradigm that one encounters, e.g., in multi-threaded 

computing environments; the scan, or, parallel-prefix operator, which simplifies the specification of algorithms for myriad 

computational problems; and many others. 

 

Algorithmic problems: Two genres of specific algorithmic problems play such important roles in a variety of computational situations 

that we view them as essential to an education about parallel and distributed computing. (1) Several of our entries are auxiliary 

computations that are useful in a variety of settings. Collective communication primitives are fundamental in myriad applications to 

the distribution of data and the collection of results. Certain basic functions perform important control tasks, especially as parallel 

computing incorporates many of the characteristics of distributed computing. The process of leader election endows processors with 

computationally meaningful names that are useful in initiating and coordinating activities at possibly remote sites. The essential 

process of termination detection is easy when parallelism is modest and processors are physically proximate, but it is a significant 

challenge in more general environments. (2) Several of our entries are independent computations that are usually sub-procedures of a 

broad range of large-scale computations. Sorting and selection are always near the top of everyone’s list of basic computations.  

Algorithms that operate on graphs and matrices also occur in almost every application area. 

 

 

7. Rationale for Crosscutting and Advanced Topics 
       

Cross-cutting topics: This section includes many of the essential conceptual underpinnings of parallel and distributed computing. 

These topics are naturally part of the architecture, programming and algorithmic areas but are often treated only implicitly. Since some 

of these topics are so important and so widely applicable to parallel and distributed computing, it is recommended that discussion of 

these topics be called out explicitly as part of a PDC curriculum. It is further recommended that these crosscutting topics be reinforced 

as appropriate in the architecture, programming, and algorithm areas. Since they are cross-cutting themes, these topics can help to tie 

together and unify the various PDC subject areas. Specific topics include concurrency, nondeterminism, locality of reference, fault-

tolerance, and energy efficiency. In terms of Bloom classification, locality has been classified as “C” due to its centrality, while the 

others have been suggested at the “K” level. 
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Concurrency provides a fundamental way for describing and reasoning about interacting program constructs (e.g., processes or 

threads).  That the individual steps of interacting programs can be ordered (interleaved) in multiple ways leads to nondeterminism.  

Performance is a key issue for parallel and distributed programs.  Many issues related to performance hinge on locality of reference.  

As practical parallel computers continue to grow in scale, fault-tolerance and energy efficiency become limiting concerns. 

 

Advanced topics: This section includes topics of significant current or emerging interest and/or those that are better suited for 

advanced courses but may be introduced in lower level courses in a limited way.  At the same time, applications of many of these 

topics will be familiar to students in their every day lives and can thus serve as motivation for deeper inquiry.  The set of topics in this 

category will necessarily be continually evolving as topics mature and even newer topics appear on the scene.  Topics current at this 

time include cluster computing, cloud/grid computing, peer-to-peer computing, distributed transactions, distributed security, web 

search, social networking, collaborative computing, and pervasive/mobile computing. 
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8.  Proposed Curriculum 

 

8.1 Notation      

        

Absolutely every individual CS/CE undergraduate must be at this level as a result of his or her required coursework 

 

K = Know the term       

C = Comprehend so as to paraphrase/illustrate    

A = Apply it in some way      

N = Not in Core, but can be in an elective course   

        

CORE COURSES:  

 

CS1   Introduction to Computer Programming (First Courses)  

CS2   Second Programming Course in the Introductory Sequence  

Systems  Intro Systems/Architecture Core Course 

DS/A   Data Structures and Algorithms 

  

ADVANCED/ELECTIVE COURSES: 

 

Arch 2   Advanced Elective Course on Architecture    

Algo 2   Elective/Advanced Algorithm Design and Analysis (CS7)  

Lang   Programming Language/Principles (after introductory sequence) 

SwEngg  Software Engineering 

ParAlgo  Parallel Algorithms 

ParProg  Parallel Programming 

Compilers  Compiler Design 

Networking            Communication Networks 

DistSystems  Distributed Systems 

 

Note: The numbers of hours suggested in the following tables must be interpreted carefully.  Within all tables except for Algorithms, 

the number suggested for a given topic represents a cumulative total across a number of higher-level topics.  For example, students 

need to achieve "A" level competence in shared memory programming.  The number of hours required for this is not simply the 

number assigned to the topic "shared memory" under "target machine model"  but rather the total of all hours allocated for “shared 
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memory” across all higher-level topics --- in addition to the hours allocated to related topics such as “SPMD,” “tasks and threads,” and 

“synchronization.”  In contrast, the hours allocated to Algorithms topics represent our estimates of the effort required to achieve the 

desired level of competence solely within the context of Algorithms instruction.  This decision reflects our recognition that many 

Algorithms topics develop concepts and tools that will pervade the coverage of many disparate non-Algorithms topics --- the specific 

list of topics varying from institution to institution.  The cumulative number of hours to master a topic is, therefore, impossible to 

estimate in isolation. 

 

 

 

8.2 Architecture Topics 

 

Table 1: Architecture 

 

 

 

Topics 

B 

L 

O 

O 

M 

# 

H 

O 

U 

R 

S 

 

 

 

Where Covered 

 

 

Learning Outcome 

Classes     

Taxonomy C 0.5 Systems Flynn's taxonomy, data vs. control parallelism, shared/distributed 

memory  

Data vs. control parallelism     

Superscalar (ILP) K 0.25 to 1, 

based on 

level 

Systems Describe opportunities for multiple instruction issue and execution 

(different instructions on different data) 

SIMD/Vector (e.g., SSE, 

Cray) 

K 0.1 to 0.5 Systems Describe uses of SIMD/Vector (same operation on multiple data 

items), e.g., accelerating graphics for games. 

Pipelines     

● Single vs. multicycle K 1 to 2 Systems Describe basic pipelining process (multiple instructions can execute 

at the same time), describe stages of instruction execution 

● Data and control 

hazards 

N  Compilers (A), 

Arch 2 (C) 

Understand how one pipe stage can depend on a result from another, 

or delayed branch resolution can start the wrong instructions in a 
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pipe, requiring forwarding, stalling, or restarting 

● OoO execution N   Arch 2 (K) Understand how independent instructions can be rescheduled for 

better pipeline utilization, and that various tables are needed to ensure 

RAW, WAR, and WAW hazards are avoided. 

Streams (e.g., GPU) K 0.1 to 0.5 Systems Know that stream-based architecture exists in GPUs for graphics 

Dataflow N   Arch 2 (K) Be aware of this alternative execution paradigm 

MIMD K 0.1 to 0.5 Systems Identify MIMD instances in practice (multicore, cluster, e.g.), and 

know the difference between execution of tasks and threads 

Simultaneous Multi-

Threading 

K 0.2 to 0.5 Systems Distinguish SMT from multicore (based on which resources are 

shared) 

Highly Multithreaded 

(e.g., MTA) 

N  Arch 2 (K) Have an awareness of the potential and limitations of thread level 

parallelism in different kinds of applications 

Multicore C 0.5 to 1 Systems Describe how cores share resources (cache, memory) and resolve 

conflicts 

Heterogeneous (e.g., Cell, 

on-chip GPU) 

K 0.1 to 0.5 Systems Recognize that multicore may not all be the same kind of core. 

Shared vs. distributed 

memory 

    

SMP N  Arch 2 (C) Understand concept of uniform access shared memory architecture 

● Buses C 0.5 to 1 Systems Single resource, limited bandwidth and latency, snooping, scalability 

issues 

NUMA(Shared Memory) N    

● CC-NUMA N  Arch 2 (K) Be aware that caches in the context of shared memory depend on 

coherence protocols 

● Directory-based CC-

NUMA 

N  Arch 2 (K) Be aware that bus-based sharing doesn’t scale, and directories offer 

an alternative 

Message passing (no 

shared memory) 

N  Arch 2 (K) Shared memory architecture breaks down when scaled due to physical 

limitations (latency, bandwidth) and results in message passing 

architectures 

● Topologies N  Algo 2 (C) Various graph topologies - linear, ring, mesh/torus, tree, hypercube, 

clique, crossbar  

● Diameter N  Algo 2 (C) Appreciate differences in diameters of various graph topologies  

● Latency K 0.2 to 0.5 Systems Know the concept, implications for scaling, impact on 
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work/communication ratio to achieve speedup 

● Bandwidth K 0.1 to 0.5 Systems Know the concept, how it limits sharing, and considerations of data 

movement cost 

● Circuit switching N  Arch 2 or 

Networking 

Know that interprocessor communication can be managed using switches in 

networks of wires to establish different point-to-point connections, that the topology 

of the network affects efficiency, and that some connections may block others 

● Packet switching N  Arch 2  or 

Networking 

Know that interprocessor communications can be broken into packets that are 

redirected at switch nodes in a network, based on header info 

● Routing N  Arch 2  or 

Networking 

Know that messages in a network must follow an algorithm that ensures progress 

toward their destinations, and be familiar with common techniques such as store-

and-forward, or wormhole routing 

Memory Hierarchy     

● Cache organization C 0.2 to 1 Systems Know the cache hierarchies, shared caches (as opposed to private 

caches) result in coherency and performance issues for software 

● Atomicity N  Arch 2 (K) Need for indivisible operations can be covered in programming, OS, 

or database context 

● Consistency N  Arch 2 (K) Models for consistent views of data in sharing can be covered in 

programming, OS, or database context 

● Coherence N  Arch 2 (C) Describe how cores share cache and resolve conflicts - may be 

covered in programming. OS, or database context 

● False sharing N  Arch2 (K)/ 

ParProg (K) 

Awareness, examples of how it originates 

● Impact on software N  Arch2 (C)/ 

ParProg (A) 

Issues of cache line length, memory blocks, patterns of array access, 

compiler optimization levels 

Floating point 

representation 

   These topics are supposed to be in the ACM/IEEE core curriculum 

already – they are included here to emphasize their importance, 

especially in the context of PDC. 

Range K  CS1/CS2/Systems Understand that range is limited, implications of infinities 

Precision K 0.1 to 0.5 CS1/CS2/Systems How single and double precision floating point numbers impact 

software performance 

Rounding issues N  Arch 2 (K)/ Algo 2 

(A) 

Understand rounding modes, accumulation of error and loss of 

precision 

Error propagation K 0.1 to 0.5 CS2 Understand NaN, Infinity values and how they affect computations 

and exception handling 
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IEEE 754 standard K 0.5 to 1 CS1/CS2/Systems Representation, range, precision, rounding, NaN, infinities, 

subnormals, comparison, effects of casting to other types 

     

Performance metrics     

Cycles per instruction 

(CPI) 

C 0.25 to 1 Systems Number of clock cycles for instructions, understand the performance 

of processor implementation, various pipelined implementations 

Benchmarks K 0.25 to 0.5 Systems Awareness of various benchmarks and how they test different aspects 

of performance 

● Spec mark K 0.25 to 0.5 Systems Awareness of pitfalls in relying on averages (different averages can 

alter perception of which architecture is faster) 

● Bandwidth 

benchmarks 

N  Arch 2 (K) Be aware that there are benchmarks focusing on data movement 

instead of computation 

Peak performance C 0.1 to 0.5 Systems Understanding peak performance, how it is rarely valid for estimating 

real performance, illustrate fallacies  

● MIPS/FLOPS K 0.1 Systems Understand meaning of terms 

Sustained performance C 0.1 to 0.5 Systems Know difference between peak and sustained performance, how to 

define, measure, different benchmarks 

● LinPack N  ParProg (K) Be aware of the existence of parallel benchmarks 
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8.3 Programming Topics 

 

 

Table 2 Programming 

 

 

 

Topics 

B 

L 

O 

O 

M 

# 

H 

O 

U 

R 

S 

 

 

 

Where Covered 

 

 

Learning Outcome 

Parallel 

Programming 

paradigms and 

Notations 

    

By the target 

machine model 

 5   

SIMD K  0.5 CS2; Systems Understand common vector operations including 

element-by-element operations and reductions. 

 Processor 

vector 

extensions 

K   Systems Know examples - SSE/Altivec macros 

 Array 

language 

extensions  

N  ParProg (A) Know how to write parallel array code in some 

language (e.g., Fortran95, Intel’s C/C++ Array 

Extension[CEAN]) 

Shared memory A 2.0     CS2; DS/A; Lang Be able to write correct thread- based programs 

(protecting shared data) and understand how to 

obtain speed up.  

 Language 

extensions 

K   Know about language extensions for parallel 

programming. Illustration from Cilk (spawn/join) 

and Java (Java threads)  

 Compiler     

directives/ 

C   Understand what simple directives, such as those of 

OpenMP, mean (parallel for, concurrent section), 
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pragmas show examples 

 Libraries C   Know one in detail, and know of the existence of 

some other example libraries such as Pthreads, 

Pfunc, Intel's TBB (Thread building blocks), 

Microsoft's TPL (Task Parallel Library), etc. 

Distributed memory C 1.0  DS/A; Systems  Know basic notions of messaging among processes, 

different ways of message passing, collective 

operations 

 Message 

passing 

N  ParProg(C)  Know about the overall organization of an message 

passing program as well as point-to-point and 

collective communication primitives (e.g., MPI) 

 PGAS 

languages 

N  ParProg (C) Know about partitioned address spaces, other 

parallel constructs (UPC, CoArray Fortran, X10, 

Chapel) 

●  Client Server C 1.0 DS/A; Systems Know notions of invoking and providing services 

(e.g., RPC, RMI, web services) - understand these as 

concurrent processes 

Hybrid K  0.5 Systems Know the notion of programming over multiple 

classes of machines simultaneously (CPU, GPU, 

etc.) 

By the control 

statement 

    

Task/thread 

spawning 

A 1 CS2; DS/A Be able to write correct programs with threads, 

synchronize (fork-join, producer/consumer, etc.), use 

dynamic threads (in number and possibly 

recursively) thread creation - (e.g. Pthreads,  Java 

threads, etc.)  - builds on shared memory topic above 

SPMD C 1    CS2; DS/A  Understand how SPMD program is written and how 

it executes 

 SPMD 

notations 

C   Know the existence of highly threaded data parallel 

notations (e.g., CUDA, OpenCL), message passing 

(e.g, MPI), and some others (e.g., Global Arrays, 

BSP library) 

Data parallel A 1 CS2; DS/A; Lang Be able to write a correct data-parallel program for 
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shared-memory machines and get speedup, should 

do an exercise. Understand relation between 

different notations for data parallel: Array notations, 

SPMD, and parallel loops. Builds on shared memory 

topic above. 

 Parallel loops 

for shared 

memory 

A  CS2; DS/A; Lang Know, through an example, one way to implement 

parallel loops, understand collision/dependencies 

across iterations (e.g., OpenMP, Intel's TBB) 

 Data parallel 

for distributed 

memory 

N  ParProg (K) Know data parallel notations for distributed memory 

(e.g., High Performance Fortran) 

Functional/logic 

languages 

N  ParProg (K) Understanding advantages and disadvantages of very 

different programming styles (e.g., Parallel Haskell, 

Parlog, Erlang) 

Semantics and 

correctness issues 

    

Tasks and threads K  0.5 CS2; DS/A; Systems, Lang Understand what it means to create and assign work 

to threads/processes in a parallel program, and know 

of at least one way do that (e.g., OpenMP, Intel 

TBB, etc.)  

Synchronization A 1.5 CS2; DS/A;  Systems Be able to write shared memory programs with 

critical regions, producer- consumer communication, 

and get speedup; know the notions of mechanisms 

for concurrency (monitors, semaphores, etc. - [from 

ACM 2008]) 

 Critical 

regions 

A   Be able to write shared memory programs that use 

critical regions for synchronization 

 Producer-

consumer 

A   Be able to write shared memory programs that use 

the producer-consumer pattern to share data and 

synchronize threads 

 Monitors K   Understand how to use monitors for synchronization 

Concurrency defects C 1.0  DS/A; Systems Understand the notions of deadlock (detection, 

prevention), race conditions (definition), 
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determinacy/non-determinacy in parallel programs 

(e.g., if there is a data race, the output may depend 

on the order of execution) 

 Deadlocks C   Understand what a deadlock is, and methods for 

detecting and preventing them 

 Data Races K   Know what a data race is, and how to use 

synchronization to prevent it 

 Memory models N  ParProg (C) Know what a memory model is, and the implications 

of the difference between strict and relaxed models 

(performance vs. ease of use) 

 Sequential 

consistency 

N   Understand semantics of sequential consistency for 

shared memory programs 

 Relaxed 

consistency 

N   Understand semantics of one relaxed consistency 

model (e.g., release consistency) for shared memory 

programs 

Tools to detect 

concurrency defects 

K  0.5 DS/A; Systems Know the existence of tools to detect race conditions 

(e.g., Eraser) 

Performance issues     

Computation C 1.5 CS2; DS/A Understand the basic notions of static and dynamic 

scheduling, mapping and impact of load balancing 

on performance 

Computation 

decomposition 

strategies 

C   Understand different ways to assign computations to 

threads or processes 

 Owner  

computes rule 

C   Understand how to assign loop iterations to threads 

based on which thread/process owns the data 

element(s) written in an iteration 

 Decomposition 

into atomic 

tasks  

C   Understand how to decompose computations into 

tasks with communication only at the beginning and 

end of each task, and assign them to 

threads/processes 

 Work stealing N  ParProg (C) Understand one way to do dynamic assignment of 

computations 
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Program 

transformations 

 

N 

  

Compilers (A) 

 

Be able to perform simple loop transformations by 

hand, and understand how that impacts performance 

of the resulting code (e.g., loop fusion, fission, 

skewing) 

Load balancing C 1.0 DS/A; Systems Understand the effects of load imbalances on 

performance, and ways to balance load across 

threads or processes 

Scheduling 

   and mapping 

C 1.0 DS/A; Systems Understand how a programmer or compiler maps 

and schedules computations to threads/processes, 

both statically and dynamically 

 Static    Understand how to map  and schedule computations 

before runtime 

 Dynamic    Understand how to map  and schedule computations 

at runtime 

 Data K 1.0  DS/A; Lang Understand impact of data distribution, layout and 

locality on performance; know false sharing and its 

impact on performance (e.g., in a cyclic mapping in 

a parallel loop); notion that transfer of data has fixed 

cost plus bit rate (irrespective of transfer from 

memory or inter-processor) 

Data distribution K   Know what block, cyclic,  and block-cyclic data 

distributions are, and what it means to distribute data 

across multiple threads/processes 

Data layout K   Know how to lay out data in memory to get improve 

performance (memory hierarchy) 

Data locality K   Know what spatial and temporal locality are, and 

how to organize data to take advantage of them 

False sharing K   Know that for cache coherent shared memory 

systems, data is kept coherent in blocks, not 

individual words, and how to avoid false sharing 

across threads of data for a block 

Performance K  0.5 DS/A; Systems Know of tools for runtime monitoring (e.g., gprof, 
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monitoring tools Vtune) 

Performance metrics C 1.0 CS2; DS/A Know the basic definitions of performance metrics 

(speedup, efficiency, work, cost), Amdahl's law; 

know the notions of scalability 

 Speedup C   Understand how to compute speedup, and what it 

means 

 Efficiency C   Understand how to compute efficiency, and why it 

matters 

 Amdahl’s law K   Know that speedup is limited by the sequential 

portion of a parallel program, if problem size is kept 

fixed 

 Gustafson’s 

Law 

K   Understand the idea of weak scaling, where problem 

size increases as the number of processes/threads 

increases 

 Isoefficiency N  ParProg; Algo2 (C) Understand the idea of how quickly to increase 

problem size with number of processes/threads to 

keep efficiency the same 
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8.4 Algorithm Topics  

 

Table 3 Algorithms 

 

Note: Recall that the numbers of hours in this table reflect just the coverage within the Algorithms portion of the curriculum.  (See the 

explanatory note in Section 8.1) 

 

 

 

Topics 

B 

L 

O 

O 

M 

# 

H 

O 

U 

R 

S 
 

 

Where 

Covered 

 

Learning Outcome 

Parallel and Distributed 

Models and Complexity 

 7.41  Be exposed to the models and to the intrinsic degree of parallelism of some 

elementary key algorithms (e.g., maximum-finding, summation) 

Costs of computation:   1.66  Follow arguments for parallel time and space complexity given by 

instructor 

Asymptotics C 1 DS/A Understand upper (big-O) and lower bounds (big- Omega,); follow 

elementary big-O analyses, e.g., the O(log n) tree-depth argument for 

mergesort with unbounded parallelism. 

Time C 0.33 DS/A Recognize time as a fundamental computational resource that can be 

influenced by parallelism 

Space/Memory C 0.33 DS/A Recognize space/memory in the same manner as time 

Cost reduction:   1  Be exposed to a variety of computational costs other than time that can 

benefit from parallelism (a more advanced extension of “speedup”) 

Speedup  C 1 DS/A Recognize the use of parallelism either to solve a given problem instance 

faster or to solve larger instance in the same time (strong and weak scaling) 

Space compression N 0.33  Be exposed to ways in which the computational resource “space” behaves 

the same as “time” and to ways in which the two cost measures differ 

Cost tradeoffs:   0.75  Recognize the inter-influence of various cost measures 

Time vs. space N 0.5 DS/A Observe several examples of this prime cost tradeoff; lazy vs. eager 

evaluation supplies many examples 
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Power vs. time N 0.25 DS/A Observe at least one example of this prime cost tradeoff (the literature on 

“VLSI computation” --- e.g., the footnoted books
4
 

5
 --- yield many 

examples) 

Scalability in algorithms and 

architectures 

C/K 0.5 DS/A Comprehend via several examples that having access more processors does 

not guarantee faster execution --- the notion of inherent sequentiality (e.g., 

the seminal paper by Brent) 

Model-based notions:  4  Recognize that architectural features can influence amenability to parallel 

cost reduction and the amount of reduction achievable 

Notions from complexity-

theory: 

 2  Understand (via examples) that some computational notions transcend the 

details of any specific model 

● PRAM  K 1 DS/A Recognize the PRAM as embodying the simplest forms of parallel 

computation: Embarrassingly parallel problems can be sped up easily just 

by employing many processors. 

● BSP/CILK K 1 DS/A Be exposed to higher-level algorithmic abstractions that encapsulate more 

aspects of real architectures. Either  BSP or CILK would be a good option 

to introduce a higher level programming model and higher-level notions.   

Remark that both of these abstractions have led to programming models. 

● Simulation/emulation N 1 Algo 2 See simple examples of this abstract, formal analogue of the virtual 

machines that are discussed under programming topics.  It is important to 

stress that (different aspects of the same) central notions of PDC can be 

observed in all four of our main topic areas.  

● P-completeness and #P-

completeness 

N 1 Algo 2 Recognize these two notions as the parallel analogues of NP-completeness.  

They are the quintessential model-independent complexity-theoretic 

notions. 

● Cellular automata N 1 Algo 2 Be exposed to this important model that introduces new aspects of 

parallelism/distributed computing --- possibly via games (such as Life) 

Notions from scheduling:  2  Understand how to decompose a problem into tasks 

● Dependencies  A 0.5 CS1/CS2, 

DS/A 

Observe how dependencies constrain the execution order of sub-

computations --- thereby lifting one from the limited domain of 

“embarrassing parallelism” to more complex computational structures. 

                                                 
4 

 F.T. Leighton (1992): Introduction to Parallel Algorithms and Architectures: Arrays,                    

 Trees, Hypercubes.  Morgan Kaufmann, San Mateo, Cal. 

 
5 

 J.D. Ullman (1984): Computational Aspects of VLSI.  Computer Science Press, Rockville, Md. 

 



 
 

 

29 

● Task graphs C 0.5 DS/A; 

SwEngg 

See multiple examples of this concrete algorithmic abstraction as a 

mechanism for exposing inter-task dependencies.  These graphs, which are 

used also in compiler analyses, form the level at which parallelism is 

exposed and exploited. 

● Work  K 0.5 DS/A Observe the impact of computational work (e.g., the total number of tasks 

executed) on complexity measures such as power consumption. 

● (Make)span K 0.5 DS/A Observe analyses in which makespan is identified with parallel time 

(basically, time to completion) 

Algorithmic Paradigms  4.5   

Divide & conquer (parallel 

aspects) 

C 1 CS2, DS/A, 

Algo 2 

Observe, via tree-structured examples such as mergesort or numerical 

integration (trapezoid rule, Simpson’s rule) or (at a more advanced level) 

Strassen's matrix-multiply, how the same structure that enables divide and 

conquer (sequential) algorithms exposes opportunities for parallel 

computation. 

Recursion (parallel aspects) C 0.5 CS2, DS/A Recognize algorithms that, via unfolding, yield tree structures whose 

subtrees can be computed independently, in parallel 

Scan (parallel-prefix)  N 0.5 ParAlgo, 

Architecture 

Observe, via several examples
6
,
7
 this "high-level" algorithmic tool 

Reduction (map-reduce) K/C 1 DS/A Recognize, and use, the tree structure implicit in scalar product or 

mergesort or histogram (equivalent apps) 

Stencil-based iteration N 0.5 ParAlgo Observe illustrations of mapping and load balancing via stenciling 

Dependencies:  K 0.5 Systems  Understand the impacts of dependencies 

"Oblivious” algorithms N 0.5 ParAlgo Observe  examples of these “model-independent” algorithms that ignore 

the details of the platform on which they are executed.  Recognize 

obliviousness as an important avenue toward portability. 

Blocking N 0.5 ParAlgo See examples of this algorithmic manifestation of memory hierarchies 

Striping N 0.5 ParAlgo See examples of this algorithmic manifestation of memory hierarchies 

“Out-of-core” algorithms N 0.5 ParAlgo Observe ways of accommodating a memory/storage hierarchy by dealing 

with issues such as locality and acknowledging the changes in cost 

measures at the various levels of the hierarchy. 

Series-parallel composition C 1 CS2(K), Understand how “barrier synchronizations” can be used to enable a simple 

                                                 
6 

 G.E. Blelloch (1989): Scans as primitive parallel operations.  IEEE Transactions on Computers 38, pp. 1526—1538 

 
7 

 F.T. Leighton (1992): Introduction to Parallel Algorithms and Architectures: Arrays, Trees, Hypercubes. 
 Morgan Kaufmann, San Mateo, Cal. 
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Systems(C) thread-based abstraction for parallel programming.  Understand the 

possible penalties (in parallelism) that this transformation incurs 

Graph embedding as an 

algorithmic tool 

N 1 ParAlgo Recognize this key algorithmic tool for crafting simulations/emulations. 

Algorithmic problems  8.5  The important thing here is to emphasize the parallel/distributed aspects of 

the topic 

Communication C/A 2  Understand --- via hands-on experience --- that inter-processor 

communication is one of the most challenging aspects of PDC.  

Broadcast C/A 1 DS/A Use this important mode of global communication; observe enabling 

algorithms for various platforms (e.g.,  recursive doubling) 

Multicast  K/C 0.5 DS/A Recognize other modalities of global communication on a variety of 

platforms: e.g., rings, 2D-meshes, hypercubes,  trees 

Scatter/gather C/A 0.5 DS/A Recognize these informational analogues of Map and reduce 

Gossip N 0.5 Dist 

Systems, 

Networking 

Recognize how all-to-all communication simplifies certain computations 

Asynchrony K 0.5 CS2 Understand asynchrony as exhibited on a distributed platform, its strengths 

(no need for synchs) and pitfalls (the danger  of race conditions) 

Synchronization K 1 CS2, DS/A Be aware of methods for controlling race conditions 

Sorting  C  1.5 CS2, DS/A Observe several sorting algorithms for varied platforms --- together with 

analyses.  Parallel merge sort is the simplest example, but equally simple 

alternatives for rings and meshes might be covered also; more 

sophisticated algorithms might be covered in more advanced courses 

Selection K 0.5 CS2, DS/A Observe algorithms for finding order statistics, notably min and max.  

Understand that selection can always be accomplished by sorting but that 

direct algorithms may be simpler.  

Graph algorithms:   1   

Search C 1 DS/A Know how to carry out BFS- and DFS-like  parallel search in a graph or 

solution space 

Path selection N 1   

Specialized computations A 2 CS2, DS/A Master one or two from among computations such as: matrix product, 

transposition, convolution, and linear systems; recognize how algorithm 

design reflects the structure of the computational problems.  

Convolutions Optional 1  Be exposed to block or cyclic mappings; understand trade-offs with 

communication costs 

Matrix computations  Optional 1  Understand the mapping and load balancing problems on various platforms 
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for significant concrete instances of computational challenges that are 

discussed at a higher level elsewhere 

● Matrix product Optional 1  Observe a sample “real” parallel algorithm, such as Cannon’s algorithm
8
 

● Linear systems Optional 1  Observe load-balancing problems in a concrete setting 

● Matrix arithmetic Optional 1  Observe the challenges in implementing even “simple” arithmetic 

● Matrix transpose Optional 1  Observe a challenging concrete data permutation problem  

Termination detection N/K 1 ParAlgo  See examples that suggest the difficulty of proving that algorithms from 

various classes actually terminate.  For more advanced courses, observe 

proofs of termination, to understand the conceptual tools needed. 

Leader election/symmetry 

breaking 

N/K 2 ParAlgo  Observe simple symmetry-breaking algorithms, say for a PRAM 

 

 

 

  

                                                 
8 

 H. Gupta, P. Sadayappan (1996): Communication Efficient Matrix-Multiplication on Hypercubes. Parallel Computing 22 , pp. 75-99.  
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8.5 Cross Cutting and Advanced Topics  
 

Table 4 Cross Cutting and Advanced  

 

 

 

Topics 

B 

L 

O 

O 

M 

# 

H 

O 

U 

R 

S 

 

 

 

Where 

Covered 

 

 

Learning Outcome 

High level themes:      

Why and what is 

parallel/distributed 

computing? 

K  0.5 CS1, CS2 Know the common issues and differences between parallel and distributed computing; 

history and applications. Microscopic level to macroscopic level parallelism in current 

architectures. 

Cross-Cutting 

topics 

   know these underlying themes 

Locality C 1     DS/A, 

Systems 

Understand this as a dominant factor impacting performance - minimizing cache/memory 

access latency or  inter-processor communication.  

Concurrency K  0.5 CS2, DS/A The degree of inherent parallelism in an algorithm, independent of how it is executed on 

a machine  

Non-determinism K  0.5 DS/A, 

Systems 

Different execution sequences can lead to different results hence algorithm design either 

be tolerant to such phenomena or be able to take advantage of this. 

Power Consumption K 0.5 Systems, 

DS/A 

Know that power consumption is a metric of growing importance, its impact on 

architectural evolution, and design of algorithms and software.   

Fault tolerance K  0.5 Systems Large-scale parallel/distributed hardware/software systems are prone to components 

failing but system as a whole needs to work.  

Performance 

modeling 

N  0.5 Arch 2, 

Networking, 

Adv OS 

Be able to describe basic performance measures and relationships between them for both 

individual resources and systems of resources. 

Current/Advanced 

Topics 

    

Cluster Computing K  0.25 CS2, DS/A, 

System 

Be able to describe a cluster as a popular local-memory architecture with commodity 

compute nodes and a high-performance interconnection network. 
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Cloud/grid 

Computing 

K  0.25 CS2, DS/A, 

System 

Recognize cloud and grid  as shared distributed resources - cloud is distinguished by on-

demand, virtualized, service-oriented software and hardware resources. 

Peer to Peer 

Computing 

K  0.25 CS1, CS2 Be able to describe a peer to peer system and the roles of server and client  nodes with 

distributed data.  Recognize existing peer to peer systems. 

Consistency in 

Distributed 

Transactions 

K  0.25 CS1,CS2, 

Systems 

Recognize classic consistency problems.  Know that consistency maintenance is a 

primary issue in transactions issued concurrently by multiple agents. 

Web search K  0.25 CS1, CS2 Recognize popular search engines  as large distributed processing systems for 

information gathering that  employ distributed hardware to support efficient response to 

user searches. 

Security in 

Distributed Systems 

K  0.5 Systems Know that distributed systems are more vulnerable to privacy and security threats; 

distributed attacks modes; inherent tension between privacy and security. 

Social 

Networking/Context 

N 0.5 AI, 

Distributed 

Systems, 

Networking,  

Know that the rise of social networking provides new  opportunities for enriching 

distributed computing with human & social context. 

Collaborative 

Computing 

N 0.25 HCI, Dist 

Systems, OS 

Know that collaboration between multiple users or devices is a form of distributed 

computing with application specific requirements. 

Performance 

modeling 

N 0.5 Arch 2, 

Networking 

Be able to describe basic performance measures and relationships between them for both 

individual resources and systems of resources. 

Web services   N 0.5 Web 

Programming, 

Dist Systems, 

Adv OS,  

Know that web service technology forms the basis of all online user interactions via 

browser.   

Pervasive and 

Mobile computing 

N 0.5 Mobile 

Computing, 

Networking, 

Dist System 

Know that the emerging pervasive and mobile computing is another form of distributed 

computing where context plays a central role. 
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9. Appendix I: Cross Reference Matrix – Core Courses vs. Topics 

 
For ease of reference by adopters/instructors of core courses, here are the core courses cross-referenced with topics for the four areas, 

with information extracted from the previous four tables.  

 

 

Table 5: Algorithm 

 

Topics DS/A CS2 

• Costs of computation:    

Asymptotics 1  

time 1  

space 1  

speedup  1  

   

• Cost reduction:    

   

space compression, etc.   

• Cost tradeoffs:    

time vs. space,  1  

power vs. time, etc. 1  

• Scalability in algorithms and architectures 1  

• Model-based notions:   

– Notions from complexity-theory:   

PRAM  1  

BSP/CILK 1  

simulation/emulation,   

P-completeness,   

 #P-completeness   

Cellular automata   

Notions from scheduling   

dependencies,  1 1 
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task graphs,  1  

 work,  1  

(make)span 1  

   

• Divide & conquer (parallel aspects) 1 1 

• Recursion (parallel aspects) 1 1 

• Scan (parallel-prefix)    

•reduction (map-reduce)    

• Stencil-based iteration   

• Dependencies:    

"oblivious” algorithms    

blocking   

striping   

“out-of-core” algorithms   

• Series-parallel composition  1  

• Graph embedding as an algorithmic tool   

   

• Communication:    

broadcast,  1  

multicast,  1  

scatter/gather 1  

gossip   

• Asynchrony  1 

• Synchronization 1 1 

Sorting  1 1 

Selection 1 1 

• Graph algorithms:    

search   

path selection    

• Specialized computations:  1 1 

convolutions   

matrix computations    
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matrix product   

linear systems   

matrix arithmetic   

matrix transpose   

Termination detection   

Leader election/symmetry breaking   

 

 

 

Table 6: Programming 

 

Topics Systems DS/A CS2 

Parallel Programming paradigms and Notations    

 By the target machine model    

     SIMD 1  1 

               Processor vector extensions 1   

     Shared memory  1 1 

     Distributed memory 1 1  

     Client Server   1 1 

     Hybrid 1   

 By the control statement    

     Task/thread spawning  1 1 

     SPMD  1 1 

     Data parallel  1 1 

                Parallel loops for shared memory  1 1 

Semantics and correctness issues    

  Tasks and threads  1 1 

  Synchronization  1 1 

  Concurrency defects 1 1  

 Tools to detect concurrency defects 1 1  

Performance issues    

 Computation  1 1 
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      Load balancing 1 1  

      Scheduling and mapping 1 1  

  Data (distribution, layout, locality)  1  

  Performance monitoring tools 1 1  

  Performance metrics  1 1 

     

 

 

 

 

 

 

 

Table 7: Architecture 

 

Topics CS1 CS2 Systems 

Superscalar (ILP)   1 

SIMD/Vector (e.g., SSE, Cray)   1 

Pipelines     

(Single vs. multicycle)   1 

Data and control hazards    

OoO execution    

Streams (e.g., GPU)   1 

Dataflow    

MIMD   1 

Simultaneous Multithreading (e.g., Hyperthreading)   1 

Highly Multithreaded (e.g., MTA)    

Multicore   1 

Cluster     

Heterogeneous (e.g., Cell)   1 

Grid/cloud  1  

    

SMP    
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Buses   1 

NUMA (Shared Memory)    

CC-NUMA    

Directory-based CC-NUMA    

Message passing (no shared memory)    

Topologies   1 

Diameter   1 

Latency   1 

Bandwidth   1 

Circuit switching    

Packet switching    

Routing    

Cache organization   1 

Atomicity    

Consistency    

Coherence    

False sharing     

Impact on software     

Range 1 1 1 

Precision 1 1 1 

Rounding issues    

Error propagation    

754 standard   1 

cycles per instruction (CPI)   1 

Benchmarks   1 

Spec mark   1 

Bandwidth benchmarks    

Peak performance   1 

MIPS/FLOPS   1 

Sustained performance   1 

LinPack    
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Table 8: Crosscutting/Advanced 

 

Topics \ Where Covered CS1 CS2 Systems DS/A 

High level  themes:      

Why and what is parallel/distributed  computing? 1 1   

Crosscutting topics:     

Concurrency  1  1 

Non-determinism   1 1 

Power   1 1 

Locality   1 1 

Current/Hot/Advanced Topics     

Cluster  1 1 1 

cloud/grid  1 1 1 

p2p 1 1   

fault tolerance   1  

Security in Distributed System   1  

Distributed transactions 1 1   

web search 1 1   

Social Networking/Context     

Collaborative Computing     

performance modeling     

web services       

pervasive computing     

mobile computing     
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10. Appendix II: Suggestions on how to teach topics 

 

10.1 Architecture 

 

Data versus control parallelism: 

 

Superscalar (ILP): Multiple issues can be covered in detail in a compiler class, an intro to systems or assembly language, or in 

architecture. However, even in an early programming class, students are often curious about the factors that affect performance across 

different processors, and are receptive to hearing about how different models have different numbers of pipelines and greater or lesser 

ability to cope with unbalanced and dependent groups of instructions.  

 

SIMD/Vector (e.g., SSE, Cray): This can be mentioned any place that vector/matrix arithmetic algorithms are covered, and even in a 

data structures class. In an architecture class, it may be part of introducing SSE-style short vector operations in a 64-bit ISA. If chip 

photos are shown, it can be noted that the control unit section of a processor could be shared among multiple identical ALUs to create 

an explicitly SIMD architecture. Or, in a survey of supercomputers, Cray vector architectures can be described as a historical example, 

and the evolution of SIMD to SPMD and streaming data parallel designs can be traced. 

 

Pipelines: Pipelines appear in simple form as one means of implementing a vector multiplier, where stages are essentially identical. 

Otherwise, they are typically covered in an architecture course. It is possible, however, to introduce the concept earlier in a 

multithreaded application where a chain of consumer/producer threads feed forward through intermediate buffers or queues.  

 

Single vs. multicycle: The difference between data paths in a single cycle and pipelined processor is most directly treated in an 

architecture course by walking through the creation of the simpler form and then converting it to a pipeline. However, it can also be 

shown in an advanced programming course, where the steps of a large, monolithic, task are broken into a chain of threads that each 

execute in a shorter amount of time, and provide opportunities for the OS to take advantage of multicore capabilities.  

 

Streams (e.g., GPU): Graphics processors are one example of a stream architecture, and can be described in terms of how they 

marshal a block of identical threads to operate in a sweep over a large array of data, and can be covered in a survey of approaches to 

data parallelism in an architecture course, or as a performance topic in a graphics course. Streams can also be used as a design pattern 

for threaded code operating on a large data structure. 

 

MIMD: In a survey of parallelism in an architecture course it is easy to take the step from uniprocessors to multiprocessors, since it is 

obvious that a CPU can be replicated and used in parallel. In an OS course, multitasking can be described both in a uniprocessor and a 



 
 

 

41 

multiprocessor context. In an early programming course, it is likely that students will be curious about what the popular term 

multicore means, and how it could impact their programming.  

 

Simultaneous Multithreading (e.g., Hyperthreading): In an architecture course, different granularities of multithreading should be 

addressed. Then the impact on the microarchitecture (multiple register sets, more ALU utilization and increased heat, additional logic 

to manage exceptions, etc.) can be covered. In an early course, where performance is discussed, it follows naturally after explaining 

superscalar issue and the low rate at which issue slots are filled. It can then be contrasted with multicore in the sense that it does not 

replicate the entire CPU, but just the parts that are essential to enabling a second thread to run in a way that fills in some underutilized 

resources. An analogy is using a truck to tow two trailers versus using two trucks to tow the same two trailers. 

 

Multicore: In an architecture course, the rise in power and heat with increased clock rate will naturally follow the idea that pipelining 

enables faster clock rates. The limited ability of chips to consume power and dissipate heat then motivates the shift away from the 

trend of using more real estate to build faster processors toward building more cores that operate at a slower rate. Once a chip has 

multiple cores, the question of how they work together leads to coverage of communication mechanisms. Scaling up the idea of 

multicores then leads to the question of whether they must all be identical. Tying chip scaling back to fault and yield models provides 

an indication that cores are likely to be heterogeneous in performance and functionality as a result of manufacturing variations. At a 

high level of abstraction, some of these concepts can be explained in an early programming course, where factors that affect 

performance are discussed.  

 

Cluster: Students may first encounter a cluster in a departmental compute server for use an instructional lab. Or it may be mentioned 

in Internet course when explaining how services such as search engines and on-line auctions are supported. In an architecture class, 

they are motivated by the practical limitations of motherboard size, and the ease of assembly using off the shelf components. In this 

context, students should also be cautioned regarding practical issues of power conditioning, thermal management, and mean time to 

failure of nodes.  

 

Grid/cloud: Students will typically have personal experience with cloud computing through internet services, such as document 

storage and sharing, that are available anywhere. Questions about how this works can be addressed in programming (where such 

services may be used by teams), networking, and database courses. More advanced courses can cover grid issues in terms of latency, 

availability, load distribution and balancing, allocation policies, etc.  

 

Shared versus distributed memory: 

 

SMP: 
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Buses: In the earliest courses, students often want to understand the differences in the many kinds of buses they hear about (front side, 

PCI, USB, etc.), and this presents and opportunity to explain how multiple components in a computer can share a common 

communication link. In an architecture course, it is normal to encounter various internal buses, including the memory bus. Once the 

idea of DMA and multiple masters is introduced, it is logically a small step to have two or more processors on the same memory bus. 

As with I/O devices on the bus, a protocol is needed to ensure that intended recipients receive current data.  

 

Message passing (no shared memory): 

 

Topologies: In an architecture course, once the idea of inter-processor communication over a network link is established, going 

beyond two processors opens up options for the arrangement of links. A few examples illustrate the potential explosion of topologies, 

so it is then worth mentioning that most can be simulated with constant order slowdown by a few key topologies. Thus, it boils down 

to more practical considerations, such as the ease of building a mesh on a circuit board, or wiring network cable and routers in a high-

degree fat-tree pattern. 

 

Diameter: Although this can also be covered as part of graph theory, it is useful to show the differences in diameter of a few 

topologies, mainly so students can see that there are some very poor choices possible, such as linear, and that most common topologies 

seek a much smaller diameter. It can be shown that in packet-switched networks, each hop incurs considerable delay due to routing 

overhead, which is a reason that students should care about the issue. 

 

Latency: In architecture, latency comes in many forms. Extending the idea to message passing is fairly obvious. What is less obvious 

is how much of it is due to the software protocol stack. Thus, specialized interfaces and routers can be used to reduce latency as a 

system scales up. The concept can also be covered in an Internet course, observing round-trip times over different numbers of hops. 

 

Bandwidth: It is fairly obvious that data can be transferred at different rates over different kinds of links. Most students will have 

experienced this effect via different wireless links, or comparing wireless to Ethernet, etc. It is really just a matter of formalizing the 

terminology. In an architecture class or as part of graph theory the idea of bisection bandwidth can also be introduced with respect to 

network topology. 

 

Memory Hierarchy: 

 

Cache organization: At the level of an architecture class, once caching has been covered, as soon as bus-based multiprocessing is 

introduced, the issue of coherency of shared data arises. In an advanced architecture class, a basic snooping protocol, such as SI can be 

shown to achieve coherency. After a few examples, it becomes clear that such a simple protocol results in excessive coherency traffic, 

and this motivates the value of a protocol with more states, such as MSI, MESI, or MOESI, which can be briefly described. 
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Floating-point representation: 

 

Precision: It is easy to explain that higher precision floating point involves a lengthier calculation, moving more bits to and from 

memory, and that an array of double precision values occupies twice as much memory as single precision. As a result, there is a 

tradeoff between precision and performance. 

 

Cycles per instruction (CPI): At one level, once the idea of clock cycle has been explained, and the fact that instructions can take 

different numbers of cycles to execute, it is easy to add the notion that processors can execute fewer or more than one instruction in 

each cycle. It can be noted that CPI is the inverse of IPC, and that these can be biased by the instruction mix resulting from compiler 

optimizations (CPI is affected by instruction scheduling). When pipelining is introduced, the CPI calculation process can be 

demonstrated via a simple by-hand demonstration of a few instructions passing through. In concept it is easy to imagine that 

superscalar issue greatly affects CPI, and students should be aware that the benefit is less than what they may expect for normal code 

sequences.  

 

Benchmarks: Students can be shown that most ad-hoc metrics are poor indicators of performance. For example, a processor with a 

high clock rate that delivers less performance than one with a lower rate (because of other architectural advantages). Thus, benchmark 

programs are a better indicator of actual performance. But then it is a question of how to define a good benchmark. One kind of 

program doesn't predict the behavior of another kind. So a suite of benchmarks helps to broaden coverage. But because a suite is an 

artificial assemblage of programs, it is inherently biased, and so different suites are needed to represent different kinds of workloads.  

 

SPEC mark: Explain differences between arithmetic, geometric, harmonic, and weighted means. Have students explore their values 

when applied to different data sets, including one with one or two outliers that are much greater than the rest. Notice the excessive 

impact that the outliers have on the arithmetic and geometric means. Look at the SPEC results for some machines and notice that most 

reports have one or two outliers. Recompute the mean using harmonic mean, and omitting the outliers. Careful selection of the reports 

can show two machines trading places in ranking when outliers are ignored. 

 

Peak performance: Use published parameters for an architecture to compute peak performance in MIPS or FLOPS, then see how this 

compares with benchmark execution reports. 

 

MIPS/FLOPS: Define these terms. 

 

Sustained performance: Define sustained performance, and show some examples in comparison to peak. 
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10.2 Programming 

 

Parallel Programming paradigms and Notations: 

  

By the target machine model: 

      

SIMD: Discuss operating on multiple data elements at a time with 1 operation/instruction, using a simple example (e.g., array add) 

with F90 syntax, as a loop, etc. 

 

Microprocessor vector extensions: Introduce (or revisit) SIMD parallelism, its pros and cons, give examples in modern 

microprocessors (SSE, Altivec), and, if possible, have the students experiment with writing simple programs that use SSE. 

 

Shared memory: Examples of thread programs with both array and control parallelism, with locks and synchronization ops, explain 

that threads may run in parallel in same address space unless prevented from doing so explicitly, definitely programming projects 

w/threads (Java, pthreads, etc.) 

      

Shared memory notations: Introduce various ways of parallel programming:  (1) Parallel languages, which come in very diverse 

flavors, for example, UPC, Cilk, X10, Erlang.  (2) Extensions to existing languages via compiler directives or pragmas, such as 

OpenMP.  (3) Parallel libraries, such as MPI, Pthreads, Pfunc, TBB, (4) Frameworks such as CUDA, OpenCL, etc., which may 

incorporate elements of all three.  If possible, students should write simple parallel programs to implement the same algorithm using 

as many of the above four notations as time and resources permit. 

 

compiler directives/pragmas: Introduce the basic directives for writing parallel loops, concurrent sections, and parallel tasks using 

OpenMP.  Have the students write simple OpenMP programs. 

     

libraries: The students should be taught how to write parallel programs using a standard language such as C or C++ and a parallel 

programming library.  Depending on the instructor's preference, any library such as Pthreads, Pfunc, TBB, or TPL can be used.  An 

advantage of Pfunc in an educational setting is that it is open source with a fairly unrestricted BSD-type license and 

advanced/adventurous students can look at or play with the source.  It is designed to permit effortless experimentation w/ different 

scheduling policies and other queue attributes. 

 

Distributed memory: Example of message passing programs that each process has its own address space with one or more threads, 

only share data via messages 
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- Client Server: Java RMI or sockets or web services example, notion of invoking a service in another (server) process, and that client 

and server may run concurrently 

      

Hybrid: Idea of a single parallel program, with each process maybe running on different hardware (CPU, GPU, other co-processor), 

and that can be client/server, or MIMD program, or something else 

 

By the control statements: 

  

Task/thread spawning: Thread program examples (Java, pthreads, Cilk), with threads creating and joining with other threads, 

synchronization, locks, etc. 

      

SPMD: Same code, different data, usually in different processes, so with message passing, but also a style of thread programming, 

need to trace an example with at least 2 threads/processes to see that each one can take a different path through the program 

 

SPMD notations: Introduce/revisit the SPMD model.  The students should be taught about programming in a parallel environment 

where data-access is highly nonuniform.  Introduce/reintroduce the notion and importance of locality.  Introduce BSP.  

Introduce/revisit data movement costs and the distinction between costs due to latency and bandwidth.  Given examples of (and, if 

possible, a brief introduction to a select) languages/frameworks, such as MPI, CUDA, etc., which can used to programming in SPMD 

model. 

      

Data parallel: Example thread and/or message passing programs, SPMD, SIMD, or just shared memory with parallel loops, operating 

on elements of a large array or other simple data structure 

      

Parallel loop: Examples of data dependences, and that a parallel loop doesn't have any across loop iterations, show that these are 

typically data parallel, but whole iterations can run concurrently, example in Fortran or C or whatever of a DO-ALL, and maybe a 

DO-ACROSS 

      

 Tools to detect concurrency defects: e.g., Spin, Intel's Parallel Studio/Inspector  

 

Performance issues: 

 

Computation: Simple example tracing parallel loop execution, and how different iterations can take different amounts of time, to 

motivate scheduling (static or dynamic) 
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Computation decomposition strategies: There are standard strategies for parallelizing a computation and its data for parallel 

execution 

 

Owner’s compute rule: An example of one decomposition method - assign loop iterations based on which process/thread owns the 

data for the iteration 

   

Load balancing: What is performance determined by in a parallel program?  When all threads/processes finish, so best when all 

finish at same time.  Introduce idea of balancing statically and/or dynamically, and when dynamic might be needed (missing info at 

decomposition time) 

 

10.3 Algorithms 

 

Parallel and Distributed Models and Complexity: 

 

Costs of computation:  

 

Asymptotics: See learning outcome for this topic.   

 

time: (1) Review the notion of O(f(n)) asymptotic time complexity of an algorithm, where n is (somehow) related to problem size 

(e.g., number of elements to be sorted, side-length of a matrix). (2) Adapt the notion to the parallel context by expressing parallel time 

complexity as O(g(n,p)), where g depends on problem size n and number of cores/processors p.  (3) Emphasize that the run time must 

include the cost of operations, memory access (with possible contention in shared-memory parallel case), and communication (in the 

distributed-memory parallel case). (4) Introduce parallel speedup and cost-optimality: a parallel algorithm is asymptotically cost 

optimal if  the product of p (the number of cores/processors) and the parallel run time = O(serial run time). 

 

space: Review serial space bound, introduce the notion of parallel space complexity and space optimality, i.e., when the product of p 

(the number of cores/processors) and the parallel space is of the same order as serial space. 

 

speedup: Introduce and formally define the notion of speedup.  Give a simple example, say, by adding n numbers in O(log n) time in 

parallel with p = n/2.  Relate to cost optimality.  Present Brent’s Theorem to illustrate limits to parallelization: problems usually have 

inherently sequential portions.  (Come back to this when dependencies are covered.) 

 

Scalability in algorithms and architectures: Revisiting the (adding n numbers) example, show that speedups higher than O(n/log n) 

can be obtained when p << n.  Use the example to show that speedup depends on both n and p; e.g., here, speedup = np/(n + plog p).  
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Introduce the notion of efficiency = speedup/p or conceptually, the amount of useful/effective work performed per core.  Show that 

efficiency typically drops as p is increased for a fixed n, but can be regained by increasing n as well.  Introduce Amdahl's law. 

 

Model-based notions: 

 

Notions from complexity-theory: 

 

PRAM: (i) Introduce PRAM model, highlighting unrealistic assumptions of O(1)-time shared memory access as well as arithmetic 

and logical operation and global clock synchronizing each step (SIMD architecture). Introduce EREW, CREW, and CRCW 

(Common, Arbitrary and Priority) versions for dealing with read-write conflicts; (ii) Illustrate PRAMs’ functioning and capability  

with simple Boolean operations over n bits (OR, AND, NAND, etc.): O(1) time with short circuit evaluation on a common CRCW 

model  vs. O(logn) using a reduction tree on an EREW; show pseudo-codes.  Demonstrate that the simple PRAM model empowers 

one to explore how much concurrency is available in a problem for purely computational reasons --- when not burdened with memory 

access and synchronization costs.  Illustrate by example how unrealistically large PRAMs can be emulated by real parallel computers 

as a vehicle for obtaining feasible parallel algorithms. 

 

BSP/CILK: Introduce BSP highlighting iterative computation wherein multiple processors compute independent subtasks, followed 

by periodic global synchronizations that allow processors to intercommunicate.  The latency of the underlying network is therefore 

exposed during the communication/synchronization step (which is ignored in PRAM model). Can illustrate with Boolean OR/AND 

over n bits  or sum/max over n integers resulting in \Omega(n/p + logp) time using p processors.  Illustrate by example the use of 

parallel slack (see the last sentence in the PRAM paragraph). 

 

Notions from scheduling: Take a simple problem such as maximization or summing an array of n integers, and illustrate how the 

problem can be partitioned into smaller tasks (over subarrays), solved, and then combined (using a task graph structured as a reduction 

tree or as a centralized “hub-spoke” tree [a/k/a “star”], with all local sums updating a global sum).  Use this to illustrate the task graph 

and the dependencies among parent and child tasks.  Alternatively --- or additionally --- consider the floating point sum of two real 

values, and show its control parallel decomposition into a pipeline.  Use this to illustrate task graphs and data dependencies between 

stages of the pipeline.  In either example, calculate the total operation count over all the tasks (work), and identify the critical path 

determining the lower bound on the parallel time (span). 

 

dependencies: Illustrate data dependencies as above; Mention that handshake synchronization is needed between the producer task 

and consumer task. 

 

task graphs: Show how to draw task graphs that model dependencies.  Demonstrate scheduling among processors when there are 

fewer processors than the available amount of parallelism at a given level of task graph; illustrate processor reuse from level to level.  
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work: Calculate work for given task graph using big-O notation. 

 

(make)span: Demonstrate how to identify critical paths in a task graph and calculate a lower bound on parallel time (possibly using 

big-omega notation).  Mention Brent’s Theorem, which is based on the critical-path notion.  Give examples (e.g., solving a triangular 

linear system or performing Gaussian elimination).    

 

Algorithmic Paradigms:  

 

Divide & conquer (parallel aspects): Introduce simple serial algorithms, such as mergesort and/or numerical integration via 

Simpson’s Rule or the Trapezoid Rule.  Illustrate Strassen's matrix-multiply algorithm via the simple recursive formulation of matrix 

multiplication.  Show how to obtain parallel algorithms using the divide-and-conquer technique.  For Strassen, this should be done 

after teaching parallel versions of usual algorithm (Cannon or Scalapack outer product). 

 

Recursion (parallel aspects): Introduce simple recursive algorithm for DFS.  Show how a parallel formulation can be obtained by 

changing recursive calls to spawning parallel tasks.  Consider the drawback of this simple parallel formulation; i.e., increased need for 

stack space. 

 

Series-parallel composition: Illustrate that this pattern is the natural way to solve many problems that need more than one phase/sub-

algorithm due to data dependencies.  Present one or more examples such as (i) time-series evolution of temperature (or your favorite 

time-stepped simulation) in a linear or 2D grid (each time step, each grid is computed as the  average of itself and its neighbors), (ii) 

O(n)-time odd-even transposition sort, or (iii) O(1)-time max-finding on a CRCW PRAM (composition of phases comprising all-to-all 

comparisons followed by row ANDs followed by identification of the overall winner and output of the max value).  It would be 

valuable to show the task graph and identify the critical path as the composition of individual critical paths of the constituent phases.   

A connection with CILK would be a valuable to expose both top illustrate a practical use and to establish nonobvious connections. 

 

Algorithmic problems: 

 

Communication: 

 

Broadcast: Introduce simple recursive doubling for one-to-all and all-to-all among p processes in log p steps.  More advanced 

efficient broadcast algorithms for large messages could also be taught after covering gather, scatter, etc.  For example, one-to-all 

broadcast = scatter + allgather. Also pipelined broadcast for large messages (split into packets and route along same route or along 

disjoint paths). 
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scatter/gather: See above. 

 

Asynchrony: Define asynchronous events and give examples in shared- and distributed-memory contexts. 

 

Synchronization: Define atomic operations, mutual exclusion, barrier synchronization, etc., examples of these and ways of 

implementing these.  Define race conditions with at least one example and show how to rewrite the code to avoid the race condition in 

the example. 

 

Sorting : (i) Explain the parallelization of mergesort wherein each level starting from bottom to top can be merged in parallel using 

n/2 processors thus requiring O(2+ 4+ … + n/4 + n/2 + n) = O(n) time.  Using p<=n/2 processors will lead to O(n/plog(n/p) + n) time, 

hence p=log n is a cost-optimal choice. (ii) Highlight that a barrier (or a lock/Boolean flag per internal node of the recursion tree) on 

shared memory machine or  messages from children processors to parent processors in a local memory machine would be needed to 

enforce data dependency; (iii) Mention that faster merging of two n/2 size subarray is possible, e.g., in O(log n) time on a CREW 

PRAM using simultaneous binary search using n processor, thus yielding O(log^2n)-time algorithm.  

 

Selection: (i) mention that min/max are special cases of selection problem and take logarithmic time using a reduction tree; (ii) for 

general case, sorting (e.g., parallel mergesort) is a solution. 

 

Graph algorithms: Basic parallel algorithms for DFS and BFS.  Preferably include deriving expressions for time, space , and speedup 

requirements (in terms of n and p).  Parallel formulations and analyses of Dijkstra's single-source and Floyd's all-source shortest path 

algorithms. 

 

Specialized computations: Example problem - matrix multiplication (AxB = C, nxn square matrices): (i) Explain the n^3-processor 

O(logn)-time PRAM CREW algorithm highlighting the amount of parallelism; this yields cost optimality by reducing processors p in 

O(n^3/logn) ensuring O(n^3/p) time (exercise?).  (ii) Explain that a practical shared-memory, statically mapped (cyclic or block) 

algorithm can be derived for p <= n^2 by computing n^2/p entries of product matrix C in a data independent manner; (iii) For p<= n, 

the scheduling simplifies to mapping rows or columns of C to processors; mention that memory contention can be reduced by starting 

calculation at the ith column in the ith row (exercise?). (iii) For a local memory machine with n processors with a cyclic connection, 

the last approach yields a simple algorithm by distributing the ith row of A and the ith column of B to P_i, and rotating B's columns  

(row-column algorithm) - yields O(n^2) computation and communication time; mention that for p<n, row and column bands of A and 

B can be employed - derive O(n^3/p) time (exercise?). (iv) For 2-D mesh, explain cannon's algorithm (may explain as refinement of 

n^2-processor shared-memory algorithm, wherein each element is a block matrix). 
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Termination detection: Define the termination detection problem 

 

- simple message based termination detection: 

- single pass ring termination detection algorithm 

- double pass ring termination detection algorithm 

- Dijkstra-Scholten algorithm 

- Huang algorithm 

 

Leader election/symmetry breaking: define the Leader election problem 

 

- Leader election in a ring: 

   - Chang and Roberts algorithm 

- General, ID based leader election: 

  - Bully algorithm 

 

10.4 Crosscutting and Advanced Topics 

 

Why and what is parallel/distributed computing?: examples: multicores, grid, cloud, etc. 

 

Crosscutting topics: can be covered briefly and then highlighted in various contexts 

 
Concurrency: The notion of inherent parallelism can be illustrated by a high level specification of the process to achieve the desired goal.  A 

simple example to consider is sorting – quick-sort or merge-sort. An important idea to illustrate with respect to inherent parallelism is how  the  

level of abstraction in the specification affects the exposed parallelism  -- that is, illustrating how some of the inherent parallelism may be 

obscured by the way the programmer approaches the problem solution and the constructs provided by the programming language.  Another 

important idea to illustrate is that of nesting – a higher level step may itself allow exploitation of parallelism at a finer grain.  A yet another 

important idea is the need to weigh the available parallelism against the overhead involved in exploiting it. 

 

Non-determinism: Non-determinism is an inherent property when dealing with parallel and distributed computing.  It can be easily illustrated by 

discussing real-life examples where, e.g.,  different runs of a parallel job give different answers due to non-determinism of floating-point addition. 

The dangers of this can be illustrating by talking about order of operations and the need for synchronization to avoid undesirable results. 

 

 Locality: The performance advantages of locality are easy to explain and can be illustrated by taking examples from a wide spectrum of data 

access scenarios.  This includes cache data locality in the programming context, memory locality in paging context, disk access locality, locality in 

the context of virtualization and cloud computing, etc.  Both spatial and temporal aspects of locality must be clarified by illustrating situations 
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where only or both may be present.  Simple eviction/prefetching policies to take advantage of locality should also be illustrated with examples.  

Relationship of temporal locality to the notion of working set should also be explained. 

 

Power consumption: Power consumption of IT equipment is a topic of increasing importance. Some general principles of power savings such as 

use of sleep states and reduced voltage/frequency operation can be introduced along with its impacts on power consumption, performance and 

responsiveness. It is also important to make a distinction between reducing power vs. reducing energy consumption by using simple examples.  

Finally, this topic provides a perfect opportunity to discuss the role of user behavior and behavior change in truly reducing IT energy consumption. 

 

Fault tolerance: Fault tolerance is a fundamental requirement to ensure robustness and becomes increasingly important as the size of the systems 

increases. In a system composed of a large number of hardware elements (e.g., processing cores) or software element (e.g., tasks), the failure of a 

few is almost a given, but this should not disrupt or silently corrupt the overall functioning. Some important aspects to cover include: an 

introduction to the increasing need for fault-tolerance illustrated by simple equations,  a brief classification of faults (transient, stuck-at, byzantine, 

…), and illustration of some basic techniques to deal with them (retry, coding, replication and voting, etc.). 

 

Performance modeling: Performance is a fundamental issue at all levels of computing and communications, and thus needs to be addressed in 

most topics, including architecture, programming, and algorithms. Indeed, performance topics appears in all of these topics. In addition, it is 

important for students to learn basic techniques for analyzing the performance impact of contention for shared resources. The basic concepts 

include the idea of a queuing  system, infinite server vs. single server queues, stability of queuing systems, utilization law, Little’s law, open and 

closed networks of resources and applying Little’s and utilization laws,  memoryless behavior, and simple M/M/c queuing analysis.  The ideas can 

be illustrated with examples from architecture, networks, and systems. 

 

Current/Hot/Advanced Topics: 

 
Cluster Computing: A cluster is characterized by a set of largely homogeneous nodes connected with a fast interconnect and managed as a single 

entity for the purposes of scheduling and running parallel and distributed programs. Both shared memory and message passing alternatives can be 

briefly discussed along with their pros and cons. Cluster computing can be illustrated by using the specific example of  a Beowulf cluster, and 

briefly discussing the use of MPI and MapReduce paradigms for solving a simple distributed computing problem. 

 

Cloud/Grid Computing: The notion of virtualization is crucial for understanding cloud computing and should be briefly covered, along with 

structure of some popular virtualization software such as VMware and Xen.  Cloud computing could then be introduced assisted by machine, 

network, and storage virtualization. A brief discussion of VM scheduling and migration is essential to provide an overview of how cloud 

computing works.  Cloud storage and cloud services concepts can be easily illustrated by using the example of drop-box – a popular cloud storage 

service. Alternately (or in addition), a hands on demonstration of how resources can be requested and used on a commercial platform such as 

Amazon EC2 is very useful introducing cloud computing to the students.  Grid computing can be briefly introduced along with a brief mention of 

Globus toolkit.   
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Peer to Peer Computing:  The students are likely to have already made a good deal of use of available P2P services such as Bit Torrent and those 

could be used as a starting point of discussion of P2P. The important concepts to get across in P2P are: (a) the notion of give and take in 

cooperative  P2P services, (b) structured vs. unstructured content organization and searches, and (c) pros and cons of P2P vs. client-server based 

implementations of services. The structure of Bit Torrent, and the key concepts of file segmentation, seed, leecher, tit-for-tat, and chocking should 

be explained briefly. Skype can be introduced as another form of P2P application.  

 

Distributed Transactions: Consistency maintenance in the face of concurrent updates is a crucial learning outcome that can be illustrated with a 

simple database update example. The need for both strict consistency and looser forms of consistency should be illustrated by using appropriate 

examples (e.g., banking vs. web browsing).  The notions of optimistic and pessimistic concurrency control can be illustrated by a simple example.  

Consistency in the presence of multiple copies is a somewhat more advanced topic that can be introduced briefly.  

 

Security and privacy: Security and privacy concerns multiply both with an increase in the size of the systems (in terms of number of independent 

agents and information repositories), and an increase in intelligence (which requires that more detailed information be learnt and shared).  

Example to illustrate the risks can be drawn from social networks, customer data learnt/maintained by Google, Amazon and other prominent 

companies, or even from emerging areas such as matching supply and demand in a smart grid. The tradeoff between security, privacy, and 

intelligence of operations can also be illustrated with these examples. 

 

Web searching: Web searching requires a substantial amount of distributed processing and pre-computation in order to provide quick answers. A 

brief discussion of web-crawling to locate new web pages and update deleted pages, building indexes for quick search, parallel search, dealing 

with multiple cached copies, and ranking of search results is important to convey the range of activities involved in web-search. The ideas are best 

illustrated via a concrete example assuming a popular search engine such as Google. 

 

Social networking: Social networking is by now well entrenched and it is likely that most beginning CS/CE students have already used one or 

more such services. The purpose of this topic is to sensitize the students to ways in which social networking information can be exploited to 

provide enhanced services that account for social context and other information derived from social networking data. The tradeoff between 

usability and privacy can also be illustrated using these examples.  

 

Collaborative computing: Collaborative computing refers to active involvement of multiple users (or devices) to accomplish some objective. 

Examples of collaborative computing include shared document editing (e.g., Google docs), multiplayer games, and collaboration between 

enterprises. Some of these applications can be discussed briefly along with some important distributed systems concepts (e.g., consistency and 

synchronization) applied to them. 

 

Web services: Web services form the basis for browser based interaction between users and the enterprise servers that provide the relevant data 

and functionality. The course can illustrate web-services by a simple programming exercise to fetch say, current stock price using Java or .Net 

framework. The course should also introduce the basic web-services infrastructure such as publication via UDDI, description of functionality via 

WSDL, invocation via SOAP RPC, and invocation using XML/SOAP. 
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Pervasive/Mobile computing: Mobile computing, possibly assisted by cloud computing for offloading heavy-duty computation and intelligent 

decision-making is emerging as a way to support applications of importance to a community or society at large.  Such applications include 

monitoring and understanding of evolving real-world events such as traffic congestion on highways, unfolding disasters, or social mood.  

Pervasive computing covers an even larger area that includes ad hoc or embedded devices such as surveillance cameras in malls, occupancy 

sensors in rooms, seismic sensors, etc.  While illustrating these as emerging examples of distributed computing, the unique aspects of these 

environments can be briefly discussed, e.g., no coupling between devices, ad hoc & changing topologies, large scale, possibility of exploiting 

context, security, privacy and reliability issues, etc.   
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11. Appendix III: Sample Elective Course: Introduction to Parallel and Distributed Computing 

 
This single course is designed to cover most of the proposed core topics into one elective parallel and distributed computing course.  

Preferred adoption model is integration of proposed topics into core level courses.  Some samples would be collected and posted at the 

curriculum site. 

  

3 semester credits or 4 quarter credits. 

Total number of hours of in-class instruction = 45. 

 

Prerequisites:  Introductory courses in Computing (CS1 and CS2) 

 

 

Syllabus: 

 

● High-level themes: Why and what is parallel/distributed computing? History, Power, Parallel vs. Distributed, Fault tolerance, 

Concurrency, non-determinism, locality (2 hours) 

● Crosscutting and Broader topics: power, locality; cluster, grid, cloud, p2p, web services  (2 hours) 

● Architectures (4.5 hours total) 

○ Classes                                                                                            (3 hours) 

■  Taxonomy 

■  Data versus control parallelism: SIMD/Vector, Pipelines, MIMD, Multi-core, Heterogeneous  

■  Shared versus distributed memory: SMP (buses), NUMA (Shared Memory), Message passing (no shared 

memory): Topologies  

○ Memory hierarchy, caches                 (1 hour) 

○ Power Issues                      (1/2 hour) 

● Algorithms (17.5 hours total) 

○ Parallel and distributed models and complexity                                        (6.5 hours) 

■  Cost of computation and Scalability: Asymptotics, time, cost, work, cost optimality, speedup, efficiency, space, 

power     - (4 hours)  

■  Model-based notions: PRAM model, BSP  - (1 hour) 

■  Notions from scheduling: Dependencies, task graphs, work, makespan – (1.5 hours) 

○ Algorithmic Paradigms                 (3 hours) 

■  Divide and conquer, Recursion 

■  Series-parallel composition 
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○ Algorithmic Problems –  (8 hours) 

■  Communication: broadcast, multicast, reduction, parallel prefix, scatter/gather       (2 hours) 

■  Synchronization: atomic operations, mutual exclusion, barrier synchronization; race condition (1 hour) 

■  Specialized computations: Rrepresentative sample from among matrix product, transposition, convolution, and 

linear systems (3 hours) 

■  Sorting, selection     (2 hour) 

● Programming (19 hours total) 

○ Parallel Programming paradigms – (3 hours) 

■  By the target machine model: Shared memory, Distributed Memory, Client-Server, Hybrid  - (1.5 hours) 

■  By the control statements: Task/thread spawning, SPMD, Data parallel, Parallel loop – (1.5 hours) 

○ Parallel programming notations – (8=6+2 hours) 

■  Shared memory notations: language extensions, compiler directives/pragma, libraries   

■  SPMD notations: MPI, CUDA, etc. 

○ Semantics and correctness issues   (4 hours) 

■  Synchronization: shared memory programs with critical regions, producer- consumer; mechanism for 

concurrency (monitors, semaphores, etc.) 

■  Concurrency defects: deadlock (detection, prevention), race conditions (definition), determinacy/indeterminacy 

in parallel programs 

○ Performance issues (3 hour)      

■  Computation: static and dynamic scheduling, mapping and impact of load balancing on performance 

■  Data:  Distribution, Layout, and Locality, False sharing, Data transfer  (1 hour)             

■  Performance metrics: speedup, efficiency, work, cost; Amdahl's law; scalability 

○ Tools  (1 hour) 

■  Debuggers                                                                                       (1 hour) 

■  Performance monitoring                                                                 (1 hour) 

 


