Teaching PDC

Teaching parallel and distributed systems programming to:
1. Undergraduate (4Th year) computer science students
2. People coming from other disciplines (math, engineering, physics, biology, ...)

Main problems:
- Heterogeneity of knowledge
- Different expectations

Computer science students

- 4Th year students
- Good background on:
 - Programming language paradigms
 - Data structures and algorithm design
 - Concurrency topics

Other students

- Basic skills on (imperative) programming
- Limited knowledge on data structures and algorithms
- No background on concurrency

Top-down approach

- Using high-level parallel patterns
 1. Introduce classical problems (matrix multiplication, sorting, searching, ...)
 2. Solve by patterns composition
 3. Focus on achieving high performance
 4. Study/analyze/extend/improve pattern internals (threads, MPI, OpenCL, OpenMP, ...)

Some patterns used

- task-pool<expr,p,c>: master-slave pattern
- pipeline<p,c,e₁, e₂, ..., eₖ>
- map<data,expr>: apply expr to chunks of data
- reduce<data,op>: reduce data using op

Advantages

- Reduce the gap with sequential programming
- Focus on problem solving
- At first, hide implementation details
- Parallel programs = composition of components
- Students becomes enthusiastic from the very beginning

Tools

- Distributed data structures
- C++ templates: SkeTo, VecCL, pdt, ...
- Targets: threads, Openmp, MPI, OpenCL
- Patterns presented graphically (with contracts)

Students differentiation

- Computer science students develop new patterns or re-implement on new targets
- Other students focus on problem solving and achieving better performance

Results

- We were able to teach both: computer science and other discipline students
- All students developed complex parallel programs from start
- The concepts are taught incrementally: from high-level designs to low-level implementation details
- This approach appears to reduce the gap with sequential programming
- Students can compare different implementations of a pattern (on different targets)