Parallel algorithms at ENS Lyon

Yves Robert
Ecole Normale Supérieure de Lyon
& Institut Universitaire de France

TCPP Workshop
February 2010
Outline

1. Scope

2. Course Topics
Follow-on of classic CLRS-based algorithm
Objective: Apprehend the complexity of parallel algorithms
Focus is on models and algorithms
Provides a sound basis for parallel programming
Not a HPC course
Organization

- 16 weeks
- Each week = 2h class
 - + 2h supervised exercises (or programming sessions)
- MPI project
- Midterm and final exam
Outline

1 Scope

2 Course Topics
Models (4 weeks)

- Sorting networks
 - Odd-even merge sort, 0-1 principle
 - Odd-even transposition sort
 - Odd-even sorting on a 1D network (work optimal)

- PRAM
 - Models (EREW, CREW, CRCW)
 - Pointer jumping (list ranking, prefix, Euler tour)
 - Performance evaluation
 - Cost, work, speedup and efficiency, Brent’s theorem
 - Comparison of PRAM models
 - Model separation, simulation theorem
 - Sorting machine
 - Merge, sorting trees, complexity and correctness
 - Relevance of the PRAM model
Networking (3 weeks)

- Interconnection networks
 - Static and dynamic topologies

- Communication models
 - Point-to-point communication protocols

- Case study: the unidirectional ring
 - Broadcast, scatter, all-to-all, pipelined broadcast

- Case study: the hypercube
 - Labeling vertices, paths and routing
 - Embedding rings and grids
 - Collective communications

- Peer-to-peer computing
 - Distributed hash tables and structured overlay networks
 - Chord, Plaxton’s routing algorithm
 - Multi-casting in a distributed hash table
Algorithms on a processor ring (2 weeks)

- Matrix-vector multiplication
- Matrix-matrix multiplication
- First look at stencil applications
- LU factorization
 ⇒ Basic version, pipelining on the ring, look-ahead algorithm
- Second look at stencil applications
 ⇒ Granularity, overlap, mapping, dependencies
- Implementing logical topologies
- Distributed vs. centralized implementations
- Summary of algorithmic principles
Processor grids and load balancing (3 weeks)

- Logical 2-D grid topologies
- Matrix multiplication on processor grids
 - Outer-product algorithm
 - Grid vs. ring?
 - Three matrix multiplication algorithms
- 2-D block cyclic data distribution
- Load balancing for heterogeneous platforms
 - Load balancing for 1-D data distributions
 ⇒ Static vs. incremental allocation algorithm
 ⇒ Application to stencils and LU factorization
 - Load balancing for 2-D data distributions
 - Matrix multiplication on a heterogeneous grid
 - Hardness of the 2-D data partitioning problem
Scope

Scheduling and loop parallelization (4 weeks)

- Where do task graphs come from?
- Solving Pb(∞)
- Solving Pb(p)
 - NP-completeness of Pb(p), list schedules, Graham’s bound and critical paths
 - Approximation algorithms for independent tasks
- Taking Communication Costs Into Account
 - NP-completeness of Pb(∞), guaranteed heuristics
 - List heuristics for Pb(p)
 - HEFT (extension to heterogeneous platforms)
- Scheduling at Compile-Time
 - Dependence levels and Kennedy-Allen algorithm
 - Dependence vectors and Lamport’s hyperplane method
 - Uniform loop nests and unimodular space-time transformations

Yves.Robert@ens-lyon.fr February 2010