the nature of their silicate inclusions is quite diverse, ranging from "primitive" objects (Techedo) to highly differentiated materials (Colomera). A previous model for the origin of IIE iron meteorites that argues for the mixing of silicates in a cooling metal puddle (26) is unable to explain the presence of chondritic (unmelted) objects as inclusions in large masses of (molten) metal. It has also been suggested that the silicates became incorporated into segregated, low-temperature metallic melts that were separated by shock-induced shear transport (27). This model is supported by the evidence for a "nonmagmatic" origin of IIE metal (27). However, no shock effects (such as metal veins or silicates with undulating extinction) have been detected in the silicate inclusions. Although we cannot exclude the possibility that such effects were annealed during the subsolidus history of the breccia, the absence of shock features is in conflict with the suggestion that metal and silicates in IIE iron meteorites were mixed by impact melting. Another view invokes impact mixing of silicates with a metal core from a different parent body (28). This model offers a plausible explanation for the unshocked nature of the silicates but requires a magmatic origin of the metal, which seems necessary to call on the existence of a partially melted H-chondrite asteroid to account for the variety of silicate inclusions observed in different specimens. Some areas of this body may have preserved their primitive compositions (for example, the inclusion in Techedo), and others became highly enriched in incompatible elements as a result of the fractionation of silicate magmas of minimum melt composition (represented by trydimitte and potassium feldspar crystals observed in Colomera and other IIE iron meteorites). It is possible that a consequence of partial melting, sulfur-rich metallic liquids locally segregated and became intermingled with silicates. It is not likely, however, that such silicate objects could preserve their original metal and sulfide contents if immersed in such a metallic magma. Watson contains a good example of a silicate body that was partially melted, losing essentially all its metal and troilitie, but retained a relatively undifferentiated composition (8). Therefore, mixing of the metallic liquid and partially melted silicates must have been followed by very rapid cooling of the assemblage in order to preserve the unmelted chondritic inclusion. It appears from the radiogenic ages that the "old" subgroup IIE area of the parent body was not substantially reheated by subsequent impacts. Therefore, the inferred cooling rates (Fig. 2) imply that the breccias were buried at a considerable depth in a megaregolith. Given that breccia formation most probably took place on the surface, burial at such depths may have occurred through collisional mixing and accretion of the parental asteroids.

REFERENCES AND NOTES

1. Here, the terms "magmatic" and "nonmagmatic" are not synonymous with melted and unmelted, respectively, as commonly used in the geological nomenclature. They actually refer to different crystallization processes. However, for historical reasons, we use Wasson's (27) terminology in this paper.
20. In the silicate samples, a correction of the 26Ne/20Ne ratio for matrix effects is obtained by adjusting the shielding indicator to yield a value for the 20Ne exposure age of 60 Ma. The resulting value is 26Ne/20Ne = 1.14 for an H-chondritic matrix and may be compared with a predicted matrix-corrected value of 1.14 (10). On the basis of model calculations (27), this 26Ne/20Ne ratio restricts the shielding depth of the silicate samples to about 10 cm. Furthermore, iron meteorites with 26Ne/20Ne > 250 were inferred to have preatmospheric radii of <50 cm (22).
30. We thank A. J. Brearley (Institute of Meteoritics, University of New Mexico) for providing the Techoo specimen, K. V. Pongies for assistance with noble gas measurements, R. N. Clayton for oxygen isotope analyses, J. Weinstein for photographic work, B. Strack for technical assistance with the scanning electron microscope, and T. J. McCoy for motivation and helpful comments. J. T. Wasson and an anonymous reviewer provided constructive criticism on the original manuscript. This work was partially funded by National Aeronautics and Space Administration grant NAGW 3428.
31. 18 October 1994; accepted 27 February 1995.
tours of the given cities. The speed of any computer, biological or not, is determined by two factors: (i) how many parallel processes it has and (ii) how many steps each can perform per unit time. For biological systems, the first of these factors can be very large: As little as 3 g of water contains approximately 10^{23} molecules. Thus, biological computations could potentially have vastly more parallelism than conventional ones.

The second of these factors is very much in the favor of conventional electronic computers: A state-of-the-art supercomputer can do 100 million instructions per second; on the other hand, a biological machine seems to be limited to just a small fraction of a biological experiment per second. However, the biological machine’s advantage in parallelism is so huge that the difference in the execution time for one instruction is not a problem.

However, even this advantage in parallelism does not make every instance of an NP problem to be solved feasible: Even with 10^{21} parallel computers, one cannot try all tours for a problem with 100 cities. The brute force algorithm is simply too inefficient. Biological computers can solve any HPP of, say, 70 or less edges. However, a practical issue is that there does not seem to be a great need to solve such HPPs. It is possible to routinely solve much larger HPPs on conventional machines (although a conventional machine will fail on some graphs of 100 nodes).

One might be tempted to conclude that biological computations are only a curious footnote to the history of computing. This is incorrect; it is possible to use biological computations to speed up many important computations (3). In particular, the method of Adleman (1) can be extended in a way that allows biological computers to potentially radically change the way that we do all computations, not just HPPs. I will show how to solve another famous NP-complete problem, the so-called “satisfaction” problem (SAT). In (3), I showed how to solve essentially any problem from NP directly. The goal here is to present the full details of the results first sketched in (3).

SAT is a simple search problem that was one of the first NP-complete problems. Consider the formula

$$F = (x \lor y) \land (\neg x \lor \neg y)$$

(1)

The variables x and y are Boolean: They are allowed to range only over the two values 0 and 1. Usually, one thinks of 0 as “false” and 1 as “true”. Then, \lor is the logical OR operation ($x \lor y = 0$ only if $x = y = 0$); \land is the logical AND operation ($x \land y = 1$ only if $x = y = 1$), and \neg denotes the “negation” of x ($\neg x = 0$ if $x = 1$ and 1 if $x = 0$). The SAT problem is to find Boolean values for x and y that make the formula F true. In this example, $x = 0$ and $y = 1$ works, as does $x = 1$ and $y = 0$, whereas $x = y = 0$ does not, nor does $x = y = 1$.

The formula F consists of two clauses: The first is $x \lor y$, and the second is $\neg x \lor \neg y$. A clause is a formula that is of the form $v_i \lor \ldots \lor v_n$ where each v_i is a variable or its negation. In general, a SAT problem consists of a Boolean formula of the form $C_1 \land \ldots \land C_m$, where each C_i is a clause. The question is, then, to find values for the variables so that the whole formula has the value 1. This is the same as finding values for the variables that make each clause have the value 1. The reason for calling this problem the satisfaction problem is that making all of the clauses true is often called “satisfying” the clauses. The current best method essentially tries all 2m choices for the n variables.

Our model of how DNA behaves is simple and idealized. It ignores many complex known effects but is an excellent first-order approximation (4). Strands of DNA are just sequences $\alpha_1, \ldots, \alpha_n$ over the alphabet $\{A, C, G, T\}$. Double strands of DNA consist of two DNA sequences, $\alpha_1, \ldots, \alpha_n$ and β_1, \ldots, β_n, that satisfy the Watson-Crick complementary condition: For each $i = 1, \ldots, k$, α_i and β_i must be complements, that is, $A \leftrightarrow T$ or $C \leftrightarrow G$. Complementary sequences anneal in an antiparallel fashion, where 5$'$ and 3$'$ refer to the chemically distinct ends of the DNA strands

$$5' - \alpha_1 - \alpha_2 - \alpha_3 \ldots - 3'$$

$$3' - \beta_1 - \beta_2 - \beta_3 \ldots - 5'$$

(2)

There are a number of simple operations that can be performed on test tubes that contain DNA strands. (i) First, it is possible to synthesize large numbers of copies of any short single strand (here short is at least 20 nucleotides, which is all that I will require). (ii) Second, it is possible to create a double strand of DNA from complementary single strands by allowing them to anneal. (iii) Third, given a test tube of DNA, one can extract those sequences that contain some consecutive pattern of length l. Assuming that the pattern is $\delta_1, \ldots, \delta_l$, where each δ_i is in $\{A, C, G, T\}$, a DNA strand $\alpha_1, \ldots, \alpha_k$ will be removed only if, for some i, $\delta_i = \alpha_i, \delta_i = \alpha_{i+1}, \ldots, \delta_l = \alpha_{i+l-1}$. (3)

I call this operation “extract.” The reason I call this extract and not “separate,” as others have suggested, is that in practice the operation only extracts some of the required strands (a typical value might be 90%). Because the operation is not “complete,” the term extract may be more suggestive.
the 5' sequence complementary to the last half of the final vertex to the test tube (that is, add β_1 and \tilde{d}_1).

The key is that every legal path in G_n corresponds to a correctly matched sequence of vertices and edges. Consider any path in the graph; it naturally consists of a sequence that alternates “vertex, edge, vertex, edge,” Suppose that $v \rightarrow a$ is an edge. Then, a path that passes through v and then a fits together like “bricks”:

\[
(5' \rightarrow 3') \quad \begin{array}{c}
\downarrow \\
(3' \rightarrow 5') \\
\end{array} \quad \begin{array}{c}
\uparrow \\
\rightarrow a \\
\end{array}
\]

The top 5' → 3' part consists of a series of “vertices.” The bottom 3' → 5' part consists of a series of “edges.” The vertex v is coded as $p_v \rho_v$, and the edge is $\tilde{d}_1 \rho_e$. The end of the vertex and the beginning of the edge can anneal because they are Watson-Crick complements. In the same way, the end of the edge and the beginning of the next vertex can also anneal. Moreover, because the sequences are chosen randomly, if l is large enough, there is a high probability that no inadvertent paths will form. Thus, after annealing, there will be DNA encoding all of the paths through the graph; that is, it will encode all n-bit sequences.

This graph has one more important property. All of the paths are “similar”: Each is different only in whether it goes “left” or “right” at a particular stage. Thus, there is no reason to believe that some paths will be more likely to appear than others. This is an important practical advantage: If only 99% of the paths are formed, then our method will have a 99% chance of success.

Operations are performed only on the DNA sequences from the graph G_n. I use $E(i, a)$ to denote all of the sequences in test tube t for which the ith bit is equal to a, for $a \in \{0, 1\}$. This is done by performing one extraction operation that checks for the sequence that corresponds to the name of x_i if $a = 1$ and to the name of x_i' if $a = 0$. The lengths of these names are long enough that it is unlikely that this sequence will occur by accident somewhere else in the piece of DNA. In some of the constructions, I use the remainder, that is, the strands that do not match the given pattern. Note that in all of the following, the strands of DNA can be assumed to be single strands.

Before proving our general result, let’s try the example $F = (x \vee y) \wedge (x \vee \bar{y})$ (Eq. 1). I construct a series of test tubes. The first one, t_0, is just the test tube of all two-bit sequences. Then, operate as follows:

1) Let t_0 be the test tube that corresponds to $E(t_0, 1)$. Let the remainder be t_1, and let t_2 be $E(t_1, 2, 1)$. Pour t_1 and t_2 together to form t_3.
2) Let t_3 be the test tube that corresponds to $E(t_3, 1, 0)$. Let the remainder be t_4. Let t_5 be $E(t_4, 2, 0)$. Again pour t_4 and t_5 together to form t_6.
3) Check to see if there is any DNA in the last test tube, t_6. The satisfying assignments are exactly those in this final test tube.

To understand how this works, consider Table 1. Tube t_1 consists of all those sequences that satisfy the first clause: $01, 10, 11$. In the same way, t_2 consists of all those from t_1 that satisfy the second clause: $01, 10$. The latter are exactly the correct answers to the given SAT problem.

Let’s now turn to the general case. Any SAT problem on n variables and m clauses can be solved with at most order m} extractions and one detect step. By “order m” I mean that the number of steps is linear in m. This means, as usual, that each clause consists of a fixed number of variables or their negations. Let C_1, \ldots, C_m be the clauses. A series of test tubes t_0, \ldots, t_m are constructed so that t_k is the set of n-bit numbers x so that $C_k(x) = C_k(x) = \ldots = 1$, where $C_k(x)$ is the value of the clause C_k on the setting of the variables to x. For t_0 use the set t_0 of all possible n-bit numbers. Assuming t_0 has been constructed, we construct t_{k+1} by the clause

\[
F \wedge C_{k+1} = F \wedge C_{k+1} \vee F_{k+1}
\]

where each v_i is a literal or a complement of a literal. For each literal v_i operate as follows: If v_i is equal to x_i, then form $E(t_i, 1)$; if it is equal to x_i', then form $E(t_i, 0)$. As in the example, the remainder of each extraction is used for the next step. Pour all of these together to form t_{k+1}. Then, do one detect operation on t_{k+1} to decide whether or not the clauses are satisfiable.

This process assumes that the operations are perfect, that the operations are performed without error. This definitely needs to be studied. The assumption that the extract gets all of the sequences is not needed. If the original test tube has many copies of the desired sequence, then all that is necessary is a reasonable probability that it is correctly extracted to make everything work properly.

These methods can be used to solve a generalization of SAT. This generalization includes most examples of NP problems. The key is to generalize the class of Boolean formulas that we consider. Recall that a SAT problem corresponds to a formula of the restricted form

\[
C_1 \wedge \ldots \wedge C_m
\]

A natural generalization of this is to consider problems that correspond to any Boolean formula. Thus, we allow formulas to be unrestricted: They can use the logical operations of negation, OR, and AND without any restrictions. More precisely, formulas are defined by the recursive definition

1) Any variable x is a formula.
2) If F is a formula, then so is \bar{F}.
3) If F_1 and F_2 are formulas, then so are $F_1 \wedge F_2$ and $F_1 \vee F_2$.

The size of a formula is measured by the number of operations used to build the formula. The SAT problem for formulas is, given a formula F, find an assignment of Boolean values to the variables so that F is true. Because this problem includes normal SAT, it is still NP-complete.

This SAT problem for formulas can be solved in a number of DNA experiments that are linear in the size of the formula. The key to proving this statement is to actually prove more: I show how to solve not just any formula, but any contact net-
work (5). A contact network is a directed graph with a single special source s and a single special sink t. Each edge is labeled with either x or ¯x, where x is some variable. Given any assignment of values to the variables, an edge is considered to be connected if the edge’s formula evaluates to 1. Thus, if the edge is labeled with x, then it is connected only if x = 0. Therefore, the network in Fig. 2 is equal to 1 only if w = 1 or x = y = z = 1.

The SAT problem for contact networks is to determine whether or not there is an assignment of values to the variables such that there is a directed connected path from s to t. If two edges have the same label, then one is connected if and only if the other is. Put another way, all values of x or ¯x are consistent. Our result follows from two simple claims: (i) Given any formula of size S, there is a contact network of size linear in S such that the set of assignments that satisfy the formula also satisfy the network. (ii) Given any contact network of size S, the SAT problem for the network can be solved in order S DNA experiments. These two claims will prove our assertion about formulas.

The first claim is classic (5). Two formulas are equivalent if they always give the same value for any assignment to the variables. Any formula can be placed into a normal form with DeMorgan’s Laws

\[\bar{x} \lor y = \bar{x} \land \bar{y} \] (7)

\[x \land y = x \lor \bar{y} \] (8)

Through these identities, any formula is equivalent to one where all the negations are on variables. Assuming that our formulas are so restructured, I build a contact network that simulates the formula inductively. If the formula is a variable or its negation, then there is a single-edge contact network that is equivalent. For example, the formula \(\bar{x} \) is equivalent to the network with an edge from s to t with the label \(\bar{x} \).

In the general case, the formula is equal to either \(E \lor F \) or \(E \land F \), where E and F are simpler formulas. Assuming that G is the network for E and that H is the one for F, the network for \(E \lor F \) is constructed by placing G and H in parallel (Fig. 3A). Clearly, there is a connected path from s to t provided that there is either a path from s to t through G or through H. The network for \(E \land F \) is constructed by placing them in series (Fig. 3B). In this case, there is a connected path from s to t provided there is one through both G and H.

It is quite simple to show how DNA experiments can be used to solve the SAT problem for any contact network. Associate a test tube \(P_v \) with each node \(v \) in the contact network. The DNA in each test tube should encode in the usual way the set of assignments to the variables that connect s to v. The test tube \(P_v \) associated with the sink t is the "answer." Suppose that \(v \rightarrow u \) is an edge with the label x (3) and that \(P_u \) is already constructed. Then, construct \(P_v \) simply by doing the extraction \(E(P_v, x, 1) \) \[E(P_v, x, 0) \]. If several edges leave a vertex v, then use an amplifying step to get multiple copies of the DNA in test tube \(P_v \). Also, if several edges enter a vertex v, then pour the resulting test tubes together to form \(P_v \).

The main open question is, of course, that if one can actually build DNA computers based on the methods described here. The key issue is errors. The operations are not perfect. I expect that in the near future, experiments will be performed that will determine whether or not DNA-based computers are a practical means of solving hard problems.

REFERENCES AND NOTES

An earlier version of this paper claimed that these results hold for circuits as well as formulas. This notion was incorrect. In joint work with J. Sgall, the case for circuits has been solved. The solution for circuits uses additional biological steps.

6. I would like to thank D. Dobkin for a number of helpful conversations about this work. I would also like to thank L. Adleman for taking the time to explain his wonderful construction. I would also like to thank D. Boneh and C. Dunworth for their help. Finally, the work was supported in part by NSF grant CCR-9304715.

24 January 1995; accepted 30 March 1995

Computation Beyond the Turing Limit

Hava T. Siegelmann

Extensive efforts have been made to prove the Church-Turing thesis, which suggests that all realizable dynamical and physical systems cannot be more powerful than classical models of computation. A simply described but highly chaotic dynamical system called the analog shift map is presented here, which has computational power beyond the Turing limit (super-Turing); it computes exactly like neural networks and analog machines. This dynamical system is conjectured to describe natural physical phenomena.

Department of Information Systems Engineering, Faculty of Industrial Engineering, Technion, Haifa 32000, Israel. E-mail: lishova@ie.technion.ac.il

SCIENCE • VOL. 268 • 28 APRIL 1995

545